Generalized Langevin Equation and the Prabhakar Derivative

We consider a generalized Langevin equation with regularized Prabhakar derivative operator. We analyze the mean square displacement, time-dependent diffusion coefficient and velocity autocorrelation function. We further introduce the so-called tempered regularized Prabhakar derivative and analyze the corresponding generalized Langevin equation with friction term represented through the tempered derivative. Various diffusive behaviors are observed. We show the importance of the three parameter Mittag-Leffler function in the description of anomalous diffusion in complex media. We also give analytical results related to the generalized Langevin equation for a harmonic oscillator with generalized friction. The normalized displacement correlation function shows different behaviors, such as monotonic and non-monotonic decay without zero-crossings, oscillation-like behavior without zero-crossings, critical behavior, and oscillation-like behavior with zero-crossings. These various behaviors appear due to the friction of the complex environment represented by the Mittag-Leffler and tempered Mittag-Leffler memory kernels. Depending on the values of the friction parameters in the system, either diffusion or oscillations dominate.

[1]  Ram K. Saxena,et al.  Analytical Solution of Generalized Space-Time Fractional Cable Equation , 2015 .

[2]  Rudolf Hilfer,et al.  Experimental evidence for fractional time evolution in glass forming materials , 2002 .

[3]  Arak M. Mathai,et al.  Computational Solutions of Distributed Order Reaction-Diffusion Systems Associated with Riemann-Liouville Derivatives , 2012, Axioms.

[4]  Arak M. Mathai,et al.  Analysis of Solar Neutrino Data from Super-Kamiokande I and II , 2014, Entropy.

[5]  E. Barkai,et al.  Fractional Langevin equation: overdamped, underdamped, and critical behaviors. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  R. Kubo The fluctuation-dissipation theorem , 1966 .

[7]  N. Pottier Aging properties of an anomalously diffusing particule , 2002, cond-mat/0205307.

[8]  Anatoly N. Kochubei,et al.  General Fractional Calculus, Evolution Equations, and Renewal Processes , 2011, 1105.1239.

[9]  Arak M. Mathai,et al.  Space-Time Fractional Reaction-Diffusion Equations Associated with a Generalized Riemann-Liouville Fractional Derivative , 2014, Axioms.

[10]  Francesco Mainardi,et al.  The Fractional Langevin Equation: Brownian Motion Revisited , 2008, 0806.1010.

[11]  F. Mainardi Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models , 2010 .

[12]  A. M. Mathai,et al.  Analysis of Solar Neutrino Data from SuperKamiokande I and II: Back to the Solar Neutrino Problem , 2012 .

[13]  M. Despósito,et al.  Subdiffusive behavior in a trapping potential: mean square displacement and velocity autocorrelation function. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  R. Agarwal,et al.  Analytic solution of generalized space time fractional reaction diffusion equation , 2017 .

[15]  R. Zwanzig Nonequilibrium statistical mechanics , 2001, Physics Subject Headings (PhySH).

[16]  R. K. Saxena,et al.  Generalized mittag-leffler function and generalized fractional calculus operators , 2004 .

[17]  E. Lutz Fractional Langevin equation. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Mathematical Modeling of Fractional Differential Filtration Dynamics Based on Models with Hilfer–Prabhakar Derivative , 2017 .

[19]  R. Metzler,et al.  Anomalous diffusion of phospholipids and cholesterols in a lipid bilayer and its origins. , 2012, Physical review letters.

[20]  Roberto Garrappa,et al.  The Prabhakar or three parameter Mittag-Leffler function: Theory and application , 2017, Commun. Nonlinear Sci. Numer. Simul..

[21]  W. Coffey,et al.  The Langevin equation : with applications to stochastic problems in physics, chemistry, and electrical engineering , 2012 .

[22]  Roberto Garrappa,et al.  Grünwald-Letnikov operators for fractional relaxation in Havriliak-Negami models , 2016, Commun. Nonlinear Sci. Numer. Simul..

[23]  Localization and Ballistic Diffusion for the Tempered Fractional Brownian–Langevin Motion , 2017, 1704.03312.

[24]  J. Paneva-Konovska Convergence of series in three parametric Mittag-Leffler functions , 2014 .

[25]  Federico Polito,et al.  Some properties of Prabhakar-type fractional calculus operators , 2015, 1508.03224.

[26]  R. Mazo On the theory of brownian motion , 1973 .

[27]  Trifce Sandev,et al.  Generalized Langevin equation with a three parameter Mittag-Leffler noise , 2011 .

[28]  X. Xie,et al.  Observation of a power-law memory kernel for fluctuations within a single protein molecule. , 2005, Physical review letters.

[29]  Jianping Xu Time-fractional particle deposition in porous media , 2017 .

[30]  Mohammadreza Ahmadi Darani,et al.  On asymptotic stability of Prabhakar fractional differential systems , 2016 .

[31]  Holger Kantz,et al.  Generalized Langevin equation with tempered memory kernel , 2017 .

[32]  I. Sokolov,et al.  Beyond monofractional kinetics , 2017 .

[33]  Federico Polito,et al.  Hilfer-Prabhakar derivatives and some applications , 2014, Appl. Math. Comput..

[34]  Yuri Luchko,et al.  General time-fractional diffusion equation: some uniqueness and existence results for the initial-boundary-value problems , 2016 .

[35]  F. Mainardi,et al.  Models of dielectric relaxation based on completely monotone functions , 2016, 1611.04028.

[36]  H. Kantz,et al.  Diffusion and Fokker-Planck-Smoluchowski Equations with Generalized Memory Kernel , 2015 .

[37]  T. R. Prabhakar A SINGULAR INTEGRAL EQUATION WITH A GENERALIZED MITTAG LEFFLER FUNCTION IN THE KERNEL , 1971 .

[38]  Andrea Giusti,et al.  Prabhakar-like fractional viscoelasticity , 2017, Commun. Nonlinear Sci. Numer. Simul..

[39]  J. Paneva-Konovska From Bessel to Multi-Index Mittag Leffler Functions: Enumerable Families, Series in them and Convergence , 2016 .

[40]  Ralf Metzler,et al.  Fractional diffusion equation with a generalized Riemann–Liouville time fractional derivative , 2011, Journal of Physics A: Mathematical and Theoretical.

[41]  Andrey G. Cherstvy,et al.  Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. , 2014, Physical chemistry chemical physics : PCCP.

[42]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .