Asymptotically optimal induced universal graphs

We prove that the minimum number of vertices of a graph that contains every graph on k vertices as an induced subgraph is $${(1+o(1)) 2^{(k-1)/2}}$$(1+o(1))2(k-1)/2. This improves earlier estimates of Moon, of Bollobás and Thomason, of Brightwell and Kohayakawa and of Alstrup, Kaplan, Thorup and Zwick. The method supplies similarly sharp estimates for the analogous problems for directed graphs, tournaments, bipartite graphs, oriented graphs and more. We also show that if $${{n \choose k}2^{-{k \choose 2}} =\lambda}$$nk2-k2=λ (where $${\lambda}$$λ can be a function of k) then the probability that the random graph G(n, 0.5) contains every graph on k vertices as an induced subgraph is $${(1-e^{-\lambda})^2+o(1)}$$(1-e-λ)2+o(1).The proofs combine combinatorial and probabilistic arguments with tools from group theory.

[1]  Gábor Rudolf,et al.  Minimal Universal Bipartite Graphs , 2007, Ars Comb..

[2]  Béla Bollobás,et al.  Graphs which Contain all Small Graphs , 1981, Eur. J. Comb..

[3]  Moni Naor,et al.  Implicit Representation of Graphs , 1992, SIAM J. Discret. Math..

[4]  Mathias Bæk Tejs Knudsen,et al.  Optimal Induced Universal Graphs and Adjacency Labeling for Trees , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[5]  J. Dixon,et al.  Permutation Groups , 1996 .

[6]  H. Wielandt,et al.  Finite Permutation Groups , 1964 .

[7]  B. Bollobás,et al.  Random Graphs of Small Order , 1985 .

[8]  J. Moon,et al.  On minimal n-universal graphs , 1965, Proceedings of the Glasgow Mathematical Association.

[9]  R. Rado Universal graphs and universal functions , 1964 .

[10]  L. Babai On the Order of Uniprimitive Permutation Groups , 1981 .

[11]  Steve Butler,et al.  Induced-Universal Graphs for Graphs with Bounded Maximum Degree , 2009, Graphs Comb..

[12]  J. Kempe,et al.  Permutation groups, minimal degrees and quantum computing , 2006, quant-ph/0607204.

[13]  Cheryl E. Praeger,et al.  On the orders of Primitive Permutation Groups , 1980 .

[14]  WERNER BALLMANN AUTOMORPHISM GROUPS , 2011 .

[15]  W. A. Manning On the order of primitive groups , 1909 .

[16]  V. G. Vizing SOME UNSOLVED PROBLEMS IN GRAPH THEORY , 1968 .

[17]  F. Chung Universal graphs and induced-universal graphs , 1990 .

[18]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[19]  Noga Alon,et al.  Bipartite decomposition of random graphs , 2014, J. Comb. Theory, Ser. B.

[20]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[21]  A. Rbnyi ON THE EVOLUTION OF RANDOM GRAPHS , 2001 .

[22]  János Komlós,et al.  Limit distribution for the existence of hamiltonian cycles in a random graph , 1983, Discret. Math..

[23]  Cyril Gavoille,et al.  Shorter Implicit Representation for Planar Graphs and Bounded Treewidth Graphs , 2007, ESA.

[24]  B. Bollobás,et al.  Cliques in random graphs , 1976, Mathematical Proceedings of the Cambridge Philosophical Society.

[25]  J. Komlos,et al.  First Occurrence of Hamilton Cycles in Random Graphs , 1985 .

[26]  John D. Dixon The Maximum Order of the Group of a Tournament , 1967, Canadian Mathematical Bulletin.

[27]  Mikkel Thorup,et al.  Adjacency Labeling Schemes and Induced-Universal Graphs , 2019, SIAM J. Discret. Math..

[28]  Y. Kohayakawa,et al.  Ramsey Properties of Orientations of Graphs , 1993, Random Struct. Algorithms.

[29]  J. Moon Topics on tournaments , 1968 .

[30]  L. Babai Automorphism groups, isomorphism, reconstruction , 1996 .

[31]  Arnaud Labourel,et al.  On induced-universal graphs for the class of bounded-degree graphs , 2008, Inf. Process. Lett..