Function-structure relationship of elastic arteries in evolution: from microfibrils to elastin and elastic fibres.

[1]  A. Fein,et al.  Immunologic measurement of elastin-derived peptides in human serum. , 2015, The American review of respiratory disease.

[2]  O. Scremin,et al.  Hypertension in β-Adducin–Deficient Mice , 2000 .

[3]  J. Rosenbloom,et al.  Interaction of Tropoelastin with the Amino-terminal Domains of Fibrillin-1 and Fibrillin-2 Suggests a Role for the Fibrillins in Elastic Fiber Assembly* , 2000, The Journal of Biological Chemistry.

[4]  R Blickhan,et al.  The function of resilin in beetle wings , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[5]  P. Purslow,et al.  The supramolecular organisation of fibrillin-rich microfibrils determines the mechanical properties of bovine zonular filaments. , 1999, The Journal of experimental biology.

[6]  S. Gorb Serial Elastic Elements in the Damselfly Wing: Mobile Vein Joints Contain Resilin , 1999, Naturwissenschaften.

[7]  Dean Y. Li,et al.  Relation between outer and luminal diameter in cannulated arteries. , 1999, American journal of physiology. Heart and circulatory physiology.

[8]  S. Wells,et al.  Determinants of mechanical properties in the developing ovine thoracic aorta. , 1999, American journal of physiology. Heart and circulatory physiology.

[9]  R. Mecham,et al.  N-terminal domains of fibrillin 1 and fibrillin 2 direct the formation of homodimers: a possible first step in microfibril assembly. , 1999, The Biochemical journal.

[10]  R. Mecham,et al.  Novel arterial pathology in mice and humans hemizygous for elastin. , 1998, The Journal of clinical investigation.

[11]  G. Faury,et al.  Role of the elastin-laminin receptor in the cardiovascular system. , 1998, Pathologie-biologie.

[12]  Dean Y. Li,et al.  Elastin is an essential determinant of arterial morphogenesis , 1998, Nature.

[13]  S. Wells,et al.  In vivo and in vitro mechanical properties of the sheep thoracic aorta in the perinatal period and adulthood. , 1998, American journal of physiology. Heart and circulatory physiology.

[14]  A. Ostuni,et al.  Identification of elastin peptides with vasorelaxant activity on rat thoracic aorta. , 1998, The international journal of biochemistry & cell biology.

[15]  J. VanNess,et al.  Effects of central leptin administration on blood pressure in normotensive rats , 1998, Neuroscience Letters.

[16]  Y. Usson,et al.  Nuclear and cytoplasmic free calcium level changes induced by elastin peptides in human endothelial cells. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[17]  C. Morris,et al.  Elastin point mutations cause an obstructive vascular disease, supravalvular aortic stenosis. , 1997, Human molecular genetics.

[18]  G. Faury,et al.  Effect of age on the vasodilatory action of elastin peptides , 1997, Mechanisms of Ageing and Development.

[19]  M. E. Demont,et al.  Microfibrils provide non‐linear elastic behaviour in the abdominal artery of the lobster Homarus americanus. , 1997, The Journal of physiology.

[20]  Trotter,et al.  Morphology and biomechanics of the microfibrillar network of sea cucumber dermis , 1996, The Journal of experimental biology.

[21]  R. Shadwick,et al.  The mechanical properties of fin whale arteries are explained by novel connective tissue designs. , 1996, The Journal of experimental biology.

[22]  N. Stergiopulos,et al.  Contributions of vascular tone and structure to elastic properties of a medium-sized artery. , 1996, Hypertension.

[23]  F L Wuyts,et al.  Elastic properties of human aortas in relation to age and atherosclerosis: a structural model. , 1995, Physics in medicine and biology.

[24]  I. Davison,et al.  The structure and physical properties of invertebrate and primitive vertebrate arteries. , 1995, Journal of Experimental Biology.

[25]  H. Dietz,et al.  Mutations in the human gene for fibrillin-1 (FBN1) in the Marfan syndrome and related disorders. , 1995, Human molecular genetics.

[26]  R. Mecham,et al.  Identification of an Elastin Cross-linking Domain That Joins Three Peptide Chains , 1995, The Journal of Biological Chemistry.

[27]  M. Safar,et al.  Biaxial mechanical properties of carotid arteries from normotensive and hypertensive rats. , 1995, Hypertension.

[28]  J. Spring,et al.  An extracellular matrix protein of jellyfish homologous to mammalian fibrillins forms different fibrils depending on the life stage of the animal. , 1995, Developmental biology.

[29]  B. Lévy,et al.  Mechanical and contractile properties of in situ localized mesenteric arteries in normotensive and spontaneously hypertensive rats. , 1995, Journal of pharmacological and toxicological methods.

[30]  M. Awal,et al.  Morphometrical changes of the arterial walls of main arteries from heart to the abdomino-inguinal mammary glands of rat from virgin through pregnancy, lactation and post-weaning. , 1995, The Journal of veterinary medical science.

[31]  M. Jacob,et al.  Effect of elastin peptides on vascular tone. , 1995, Journal of Vascular Research.

[32]  R. Mecham,et al.  Microfibril-associated glycoprotein binds to the carboxyl-terminal domain of tropoelastin and is a substrate for transglutaminase. , 1994, The Journal of biological chemistry.

[33]  J. Belik Large pulmonary arteries and the control of pulmonary vascular resistance in the newborn. , 1994, Canadian journal of physiology and pharmacology.

[34]  G. L’italien,et al.  Biaxial elastic properties of rat arteries in vivo: influence of vascular wall cells on anisotropy. , 1994, The American journal of physiology.

[35]  G. Gamble,et al.  Estimation of Arterial Stiffness, Compliance, and Distensibility From M‐Mode Ultrasound Measurements of the Common Carotid Artery , 1994, Stroke.

[36]  T. Henry,et al.  A redox-based O2 sensor in rat pulmonary vasculature. , 1993, Circulation research.

[37]  D B Longmore,et al.  Magnetic resonance assessment of the pulmonary arterial trunk anatomy, flow, pulsatility and distensibility. , 1993, European heart journal.

[38]  J. Rosenbloom,et al.  Extracellular matrix 4: The elastic fiber , 1993, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[39]  Patricia Spallone,et al.  Hemizygosity at the elastin locus in a developmental disorder, Williams syndrome , 1993, Nature Genetics.

[40]  M. Tanzer,et al.  Extracellular Matrix 3: Evolution of the extracellular matrix in invertebrates , 1993, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[41]  F. Ramirez,et al.  The fibrillin‐marfan syndrome connection , 1993, BioEssays : news and reviews in molecular, cellular and developmental biology.

[42]  Colleen A. Morris,et al.  The elastin gene is disrupted by a translocation associated with supravalvular aortic stenosis , 1993, Cell.

[43]  B. Starcher,et al.  Composition and mechanics of mesenteric resistance arteries from pregnant rats. , 1992, The American journal of physiology.

[44]  Y. Tardy,et al.  Non-invasive determination of arterial diameter and distensibility by echo-tracking techniques in hypertension , 1992, Journal of hypertension. Supplement : official journal of the International Society of Hypertension.

[45]  R N Vaishnav,et al.  Effect of hypertension on elasticity and geometry of aortic tissue from dogs. , 1990, Journal of biomechanical engineering.

[46]  S. A. Stricker,et al.  Structure and Biomechanical Properties of Crustacean Blood Vessels , 1990, Physiological Zoology.

[47]  R. Mohiaddin,et al.  Pulmonary artery distensibility and blood flow patterns: a magnetic resonance study of normal subjects and of patients with pulmonary arterial hypertension. , 1989, American heart journal.

[48]  H. Nakamura,et al.  Electron microscopic study of the prenatal development of the thoracic aorta in the rat. , 1988, The American journal of anatomy.

[49]  P. Vreugdenhil,et al.  Elastic properties of the aortas of the horseshoe crab, limulus polyphemus , 1987 .

[50]  G. Wright Structure of the conus arteriosus and ventral aorta in the sea lamprey, Petromyzon marinus, and the Atlantic hagfish, Myxine glutinosa: microfibrils, a major component , 1984 .

[51]  V. Ferrans,et al.  Development of elastic fibers of nuchal ligament, aorta, and lung of fetal and postnatal sheep: an ultrastructural and electron microscopic immunohistochemical study. , 1984, The American journal of anatomy.

[52]  V. Ferrans,et al.  The electron microscopic immunohistochemistry of elastase-treated aorta and nuchal ligament of fetal and postnatal sheep. , 1984, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[53]  K. Donovan,et al.  Saralasin dilates arterioles in SHR but not WKY rats. , 1984, Hypertension.

[54]  S. Greenwald,et al.  Changes in the distensibility of the intrapulmonary arteries in the normal newborn and growing pig. , 1982, Cardiovascular research.

[55]  H. Handa,et al.  Experimental cerebral vasospasm arterial wall mechanics and connective tissue composition. , 1982, Stroke.

[56]  R. Shadwick,et al.  The Biomechanics of the Arteries of Nautilus, Nototodarus, and Sepia , 1982 .

[57]  H. Sage,et al.  Structure-function Relationships in the Evolution of Elastin , 1982 .

[58]  R. Shadwick,et al.  Elastic arteries in invertebrates: mechanics of the octopus aorta. , 1981, Science.

[59]  John M. Gosline,et al.  Elastin as a random‐network elastomer: A mechanical and optical analysis of single elastin fibers , 1981 .

[60]  G Olivetti,et al.  Morphometric Study of Early Postnatal Development of the Thoracic Aorta in the Rat , 1980, Circulation research.

[61]  M. Wells The Heartbeat of Octopus Vulgaris , 1979 .

[62]  P. Yates,et al.  The elasticity of the internal lamina , 1975, The Journal of pathology.

[63]  Gerrity Rg,et al.  The aortic tunica media of the developing rat. II. Incorporation by medial cells 3-H-proline into collagen and elastin: autoradiographic and chemical studies. , 1975 .

[64]  Gerrity Rg,et al.  The aortic tunica media of the developing rat. I. Quantitative stereologic and biochemical analysis. , 1975 .

[65]  B. Siassi,et al.  Direct monitoring of arterial blood pressure in depressed and normal newborn infants during the first hour of life. , 1974, The Journal of pediatrics.

[66]  C. Berry,et al.  Nucleic acid and scleroprotein content of the developing human aorta , 1972, The Journal of pathology.

[67]  C. Berry,et al.  The growth and development of the rat aorta. I. Morphological aspects. , 1972, Journal of anatomy.

[68]  M. R. Roach The static elastic properties of carotid arteries from fetal sheep. , 1970, Canadian journal of physiology and pharmacology.

[69]  J. Kitterman,et al.  Aortic blood pressure in normal newborn infants during the first 12 hours of life. , 1969, Pediatrics.

[70]  A. Rovick,et al.  Influence of vascular smooth muscle on contractile mechanics and elasticity of arteries. , 1969, The American journal of physiology.

[71]  E. M. Symonds,et al.  Arterial and venous pressures in the human umbilical cord. , 1967, American journal of obstetrics and gynecology.

[72]  R. V. Rice,et al.  Abductin: A Rubber-Like Protein from the Internal Triangular Hinge Ligament of Pecten , 1967, Science.

[73]  S. Glagov,et al.  A Lamellar Unit of Aortic Medial Structure and Function in Mammals , 1967, Circulation research.

[74]  M. G. Taylor,et al.  Alterations with Age in the Viscoelastic Properties of Human Arterial Walls , 1966, Circulation research.

[75]  P. Saffman,et al.  Extensibility of blood vessels in isolated rabbit lungs , 1965, The Journal of physiology.

[76]  S. Glagov,et al.  Structural Basis for the Static Mechanical Properties of the Aortic Media , 1964, Circulation research.

[77]  Lysle H. Peterson,et al.  Mechanical Properties of Arteries in Vivo , 1960 .

[78]  R. H. Brown,et al.  The Jumping Mechanism of Salticid Spiders , 1959 .

[79]  R. H. Brown,et al.  The Hydraulic Mechanism of the Spider Leg , 1959 .

[80]  J. Denie,et al.  Supravalvular Aortic Stenosis , 1958, Circulation.

[81]  A. C. Burton,et al.  The reason for the shape of the distensibility curves of arteries. , 1957, Canadian journal of biochemistry and physiology.

[82]  J. Nichol,et al.  The effect of cholesterol feeding on the distensibility of the isolated thoracic aorta of the rabbit. , 1955, Canadian journal of biochemistry and physiology.

[83]  A. C. Burton Relation of structure to function of the tissues of the wall of blood vessels. , 1954, Physiological reviews.

[84]  E. Ogden,et al.  THE BLOOD PRESSURE OF THE FETAL RAT AND ITS RESPONSE TO RENIN AND ANGIOTONIN , 1942 .

[85]  I. C. Benson,et al.  STUDIES ON THE ELASTIC PROPERTIES OF HUMAN ISOLATED AORTA. , 1937, The Journal of clinical investigation.

[86]  J. Gosline,et al.  Mechanical role of elastin-associated microfibrils in pig aortic elastic tissue. , 1998, Connective tissue research.

[87]  P. Purslow,et al.  X-Ray diffraction studies of fibrillin-rich microfibrils: effects of tissue extension on axial and lateral packing. , 1998, Journal of structural biology.

[88]  H. Gregersen,et al.  Static elastic wall properties of the abdominal porcine aorta in vitro and in vivo. , 1997, European journal of vascular and endovascular surgery : the official journal of the European Society for Vascular Surgery.

[89]  M. Blaustein,et al.  A mitochondrial uncoupler increases KCa currents but decreases KV currents in pulmonary artery myocytes. , 1996, The American journal of physiology.

[90]  L. Robert,et al.  Rôle du récepteur de l'élastine-lamine dans la vasorégulation , 1994 .

[91]  M. Cipolla,et al.  Pregnancy-induced changes in the three-dimensional mechanical properties of pressurized rat uteroplacental (radial) arteries. , 1993, American journal of obstetrics and gynecology.

[92]  M. Jacob,et al.  Determination of elastin peptides in normal and arteriosclerotic human sera by ELISA. , 1990, Clinical physiology and biochemistry.

[93]  H. W. Weizsäcker,et al.  Passive elastic properties of the rat aorta. , 1990, Biomedizinische Technik. Biomedical engineering.

[94]  R. Shadwick,et al.  Mechanical Properties of the Octopus Aorta , 1985 .

[95]  H. Sage The evolution of elastin: correlation of functional properties with protein structure and phylogenetic distribution. , 1983, Comparative biochemistry and physiology. B, Comparative biochemistry.

[96]  N. Simionescu,et al.  The Cardiovascular System , 1983 .

[97]  G. Bourne Blood pressure in the squid, Loligo pealei , 1982 .

[98]  H. Sage,et al.  Structure-function relationship in the evolution of elastin. , 1982, The Journal of investigative dermatology.

[99]  J. C. Fanning,et al.  Possible roles of microfibrils in elastogenesis. , 1981, Connective tissue research.

[100]  J. Gosline,et al.  The elastic properties of rubber-like proteins and highly extensible tissues. , 1980, Symposia of the Society for Experimental Biology.

[101]  W. Gray,et al.  Studies on the evolution of elastin--I. Phylogenetic distribution. , 1979, Comparative biochemistry and physiology. B, Comparative biochemistry.

[102]  E. Monos,et al.  Effect of acute ischaemia on active and passive large deformation mechanics of canine carotid arteries. , 1979, Acta physiologica Academiae Scientiarum Hungaricae.

[103]  W. Gray,et al.  Evolution of elastin structure. , 1977, Advances in experimental medicine and biology.

[104]  R. Ross,et al.  The morphogenesis of elastic fibers. , 1977, Advances in experimental medicine and biology.

[105]  R. Gerrity,et al.  The aortic tunica media of the developing rat. I. Quantitative stereologic and biochemical analysis. , 1975, Laboratory investigation; a journal of technical methods and pathology.

[106]  R. Gerrity,et al.  The aortic tunica media of the developing rat. II. Incorporation by medial cells 3-H-proline into collagen and elastin: autoradiographic and chemical studies. , 1975, Laboratory investigation; a journal of technical methods and pathology.

[107]  Beaumont,et al.  La pathogénie de l'athérosclérose. , 1972 .

[108]  L. Cordero Heart rate changes during the first hour of life. , 1972, Biology of the neonate.

[109]  S. A. Rooholamini,et al.  Pressure-diameter relations of small blood vessels in isolated dog lung. , 1970, Microvascular research.

[110]  C. Roy,et al.  The Elastic Properties of the Arterial Wall , 1881, The Journal of physiology.