A PTAS for $\ell_p$-Low Rank Approximation

A number of recent works have studied algorithms for entrywise $\ell_p$-low rank approximation, namely algorithms which given an $n \times d$ matrix $A$ (with $n \geq d$), output a rank-$k$ matrix $B$ minimizing $\|A-B\|_p^p=\sum_{i,j} |A_{i,j} - B_{i,j}|^p$. We show the following: On the algorithmic side, for $p \in (0,2)$, we give the first $n^{\text{poly}(k/\epsilon)}$ time $(1+\epsilon)$-approximation algorithm. For $p = 0$, there are various problem formulations, a common one being the binary setting for which $A\in\{0,1\}^{n\times d}$ and $B = U \cdot V$, where $U\in\{0,1\}^{n \times k}$ and $V\in\{0,1\}^{k \times d}$. There are also various notions of multiplication $U \cdot V$, such as a matrix product over the reals, over a finite field, or over a Boolean semiring. We give the first PTAS for what we call the Generalized Binary $\ell_0$-Rank-$k$ Approximation problem, for which these variants are special cases. Our algorithm runs in time $(1/\epsilon)^{2^{O(k)}/\epsilon^{2}} \cdot nd \cdot \log^{2^k} d$. For the specific case of finite fields of constant size, we obtain an alternate algorithm with time $n \cdot d^{\text{poly}(k/\epsilon)}$. On the hardness front, for $p \in (1,2)$, we show under the Small Set Expansion Hypothesis and Exponential Time Hypothesis (ETH), there is no constant factor approximation algorithm running in time $2^{k^{\delta}}$ for a constant $\delta > 0$, showing an exponential dependence on $k$ is necessary. For $p = 0$, we observe that there is no approximation algorithm for the Generalized Binary $\ell_0$-Rank-$k$ Approximation problem running in time $2^{2^{\delta k}}$ for a constant $\delta > 0$. We also show for finite fields of constant size, under the ETH, that any fixed constant factor approximation algorithm requires $2^{k^{\delta}}$ time for a constant $\delta > 0$.

[1]  Michael W. Mahoney Randomized Algorithms for Matrices and Data , 2011, Found. Trends Mach. Learn..

[2]  Yi Zhou,et al.  Analysis of Robust PCA via Local Incoherence , 2015, NIPS.

[3]  A. Grothendieck Résumé de la théorie métrique des produits tensoriels topologiques , 1996 .

[4]  Prasad Raghavendra,et al.  Reductions between Expansion Problems , 2010, 2012 IEEE 27th Conference on Computational Complexity.

[5]  David P. Woodruff,et al.  Nearly-optimal bounds for sparse recovery in generic norms, with applications to k-median sketching , 2015, SODA.

[6]  Peng Jiang,et al.  A Clustering Approach to Constrained Binary Matrix Factorization , 2014 .

[7]  Pasin Manurangsi,et al.  Inapproximability of Maximum Biclique Problems, Minimum k-Cut and Densest At-Least-k-Subgraph from the Small Set Expansion Hypothesis , 2017, Algorithms.

[8]  Nicolas Gillis,et al.  On the Complexity of Robust PCA and ℓ1-norm Low-Rank Matrix Approximation , 2015, Math. Oper. Res..

[9]  Milos Hauskrecht,et al.  Noisy-OR Component Analysis and its Application to Link Analysis , 2006, J. Mach. Learn. Res..

[10]  Heikki Mannila,et al.  A Simple Algorithm for Topic Identification in 0-1 Data , 2003, PKDD.

[11]  Pauli Miettinen,et al.  Matrix Decomposition Methods for Data Mining : Computational Complexity and Algorithms , 2009 .

[12]  Panos P. Markopoulos,et al.  L1-Norm Principal-Component Analysis via Bit Flipping , 2016, 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA).

[13]  Pauli Miettinen,et al.  The Discrete Basis Problem , 2006, IEEE Transactions on Knowledge and Data Engineering.

[14]  Vilém Vychodil,et al.  Discovery of optimal factors in binary data via a novel method of matrix decomposition , 2010, J. Comput. Syst. Sci..

[15]  David P. Woodruff,et al.  Input Sparsity and Hardness for Robust Subspace Approximation , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[16]  David P. Woodruff,et al.  Weighted low rank approximations with provable guarantees , 2016, STOC.

[17]  Arie Yeredor,et al.  ICA over finite fields - Separability and algorithms , 2012, Signal Process..

[18]  Prasad Raghavendra,et al.  Approximations for the isoperimetric and spectral profile of graphs and related parameters , 2010, STOC '10.

[19]  Kristoffer Arnsfelt Hansen,et al.  On Low Rank Approximation of Binary Matrices , 2015, ArXiv.

[20]  David P. Woodruff Sketching as a Tool for Numerical Linear Algebra , 2014, Found. Trends Theor. Comput. Sci..

[21]  Subhash Khot,et al.  Hardness results for coloring 3-colorable 3-uniform hypergraphs , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[22]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[23]  Jieping Ye,et al.  Mining discrete patterns via binary matrix factorization , 2009, KDD.

[24]  Vijayalakshmi Atluri,et al.  The role mining problem: finding a minimal descriptive set of roles , 2007, SACMAT '07.

[25]  David P. Woodruff,et al.  Low rank approximation with entrywise l1-norm error , 2017, STOC.

[26]  L. Sunil Chandran,et al.  On the Parameterized Complexity of Biclique Cover and Partition , 2016, IPEC.

[27]  Venkatesan Guruswami,et al.  Inapproximability of Matrix p→q Norms , 2018, Electron. Colloquium Comput. Complex..

[28]  Panos P. Markopoulos,et al.  Some Options for L1-subspace Signal Processing , 2013, ISWCS.

[29]  Fahad Panolan,et al.  Approximation Schemes for Low-rank Binary Matrix Approximation Problems , 2018, ACM Trans. Algorithms.

[30]  Guy Kindler,et al.  The UGC hardness threshold of the ℓp Grothendieck problem , 2008, SODA '08.

[31]  Prasad Raghavendra,et al.  Graph expansion and the unique games conjecture , 2010, STOC '10.

[32]  Feiping Nie,et al.  Optimal Mean Robust Principal Component Analysis , 2014, ICML.

[33]  David P. Woodruff,et al.  Numerical linear algebra in the streaming model , 2009, STOC '09.

[34]  Kasturi R. Varadarajan,et al.  Efficient Subspace Approximation Algorithms , 2007, Discrete & Computational Geometry.

[35]  Daureen Steinberg COMPUTATION OF MATRIX NORMS WITH APPLICATIONS TO ROBUST OPTIMIZATION , 2007 .

[36]  Nisheeth K. Vishnoi,et al.  The Unique Games Conjecture, Integrality Gap for Cut Problems and Embeddability of Negative Type Metrics into 1 (Extended Abstract) , 2005 .

[37]  Amit Kumar,et al.  Linear Time Algorithms for Clustering Problems in Any Dimensions , 2005, ICALP.

[38]  David P. Woodruff,et al.  An optimal algorithm for the distinct elements problem , 2010, PODS '10.

[39]  J. Brooks,et al.  A Pure L1-norm Principal Component Analysis. , 2013, Computational statistics & data analysis.

[40]  Nojun Kwak,et al.  Efficient $l_{1}$ -Norm-Based Low-Rank Matrix Approximations for Large-Scale Problems Using Alternating Rectified Gradient Method , 2015, IEEE Transactions on Neural Networks and Learning Systems.

[41]  Subhash Khot,et al.  A Simple Deterministic Reduction for the Gap Minimum Distance of Code Problem , 2014, IEEE Transactions on Information Theory.

[42]  T. Kanade,et al.  Robust subspace computation using L1 norm , 2003 .

[43]  Marcel R. Ackermann,et al.  Clustering for metric and non-metric distance measures , 2008, SODA '08.

[44]  Michael W. Mahoney,et al.  Low-distortion subspace embeddings in input-sparsity time and applications to robust linear regression , 2012, STOC '13.

[45]  Prateek Jain,et al.  Non-convex Robust PCA , 2014, NIPS.

[46]  Shuicheng Yan,et al.  Practical low-rank matrix approximation under robust L1-norm , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[47]  Noga Alon,et al.  On Two Segmentation Problems , 1999, J. Algorithms.

[48]  Prasad Raghavendra,et al.  Bypassing UGC from Some Optimal Geometric Inapproximability Results , 2016, TALG.

[49]  Anirban Dasgupta,et al.  Sampling algorithms and coresets for ℓp regression , 2007, SODA '08.

[50]  Michael Langberg,et al.  A unified framework for approximating and clustering data , 2011, STOC.

[51]  Aditya Bhaskara,et al.  Approximating matrix p-norms , 2010, SODA '11.

[52]  José H. Dulá,et al.  The L1-norm best-fit hyperplane problem , 2013, Appl. Math. Lett..

[53]  J. Paul Brooks,et al.  pcaL 1 : An Implementation in R of Three Methods for L 1-Norm Principal Component Analysis , 2013 .

[54]  Guy Kindler,et al.  On non-approximability for quadratic programs , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[55]  Kasturi R. Varadarajan,et al.  Sampling-based dimension reduction for subspace approximation , 2007, STOC '07.

[56]  Diego Klabjan,et al.  Three iteratively reweighted least squares algorithms for $$L_1$$L1-norm principal component analysis , 2017, Knowledge and Information Systems.

[57]  Inderjit S. Dhillon,et al.  Robust Principal Component Analysis with Side Information , 2016, ICML.

[58]  Silvio Lattanzi,et al.  Algorithms for $\ell_p$ Low-Rank Approximation , 2017, ICML.

[59]  Lei Zhang,et al.  A Cyclic Weighted Median Method for L1 Low-Rank Matrix Factorization with Missing Entries , 2013, AAAI.

[60]  Amit Kumar,et al.  A simple linear time ( 1+ ε)- approximation algorithm for geometric k-means clustering in any dimensions , 2004 .

[61]  Russell Impagliazzo,et al.  On the Complexity of k-SAT , 2001, J. Comput. Syst. Sci..

[62]  John Wright,et al.  Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Matrices via Convex Optimization , 2009, NIPS.

[63]  David P. Woodruff,et al.  Coresets and sketches for high dimensional subspace approximation problems , 2010, SODA '10.

[64]  Panos P. Markopoulos,et al.  Optimal Algorithms for L1-subspace Signal Processing , 2014, IEEE Transactions on Signal Processing.

[65]  David Steurer Subexponential Algorithms for dto-1 Two-Prover Games and for Certifying Almost Perfect Expansion , 2010 .

[66]  David P. Woodruff,et al.  Approximation Algorithms for l0-Low Rank Approximation , 2017, NIPS.

[67]  Ashley Montanaro,et al.  Testing Product States, Quantum Merlin-Arthur Games and Tensor Optimization , 2010, JACM.

[68]  Yuan Zhou,et al.  Hypercontractivity, sum-of-squares proofs, and their applications , 2012, STOC '12.

[69]  Saharon Rosset,et al.  Generalized Independent Component Analysis Over Finite Alphabets , 2016, IEEE Trans. Inf. Theory.

[70]  Takeo Kanade,et al.  Robust L/sub 1/ norm factorization in the presence of outliers and missing data by alternative convex programming , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[71]  Arie Yeredor,et al.  Independent Component Analysis Over Galois Fields of Prime Order , 2011, IEEE Transactions on Information Theory.

[72]  Julien M. Hendrickx,et al.  MATRIX p-NORMS ARE NP-HARD TO APPROXIMATE IF p not equal to 1, 2, infinity , 2010 .