What are the astrophysical sites for the r-process and the production of heavy elements?
暂无分享,去创建一个
K. Kratz | T. Fischer | G. Martínez-Pinedo | K. Langanke | T. Rauscher | I. Dillmann | M. Liebendörfer | Friedrich-Karl Thielemann | I. Panov | K. Farouqi | I. Korneev | C. Fröhlich | A. Arcones | C. Winteler | R. Käppeli
[1] H. Umeda,et al. NUCLEOSYNTHESIS IN HIGH-ENTROPY HOT BUBBLES OF SUPERNOVAE AND ABUNDANCE PATTERNS OF EXTREMELY METAL-POOR STARS , 2010, 1007.3998.
[2] A. Burrows,et al. DIMENSION AS A KEY TO THE NEUTRINO MECHANISM OF CORE-COLLAPSE SUPERNOVA EXPLOSIONS , 2010, 1006.3792.
[3] L. Roberts,et al. INTEGRATED NUCLEOSYNTHESIS IN NEUTRINO-DRIVEN WINDS , 2010, 1004.4916.
[4] K. Kratz,et al. CHARGED-PARTICLE AND NEUTRON-CAPTURE PROCESSES IN THE HIGH-ENTROPY WIND OF CORE-COLLAPSE SUPERNOVAE , 2010, 1002.2346.
[5] F. Thielemann,et al. Stellar (n,γ) cross sections of -process isotopes Part I: 102Pd, 120Te, 130,132Ba, and 156Dy , 2010, 1001.1906.
[6] F. Thielemann,et al. Neutron-induced astrophysical reaction rates for translead nuclei , 2009, 0911.2181.
[7] A. Mezzacappa,et al. Protoneutron star evolution and the neutrino-driven wind in general relativistic neutrino radiation hydrodynamics simulations , 2009, 0908.1871.
[8] S. Woosley,et al. NUCLEOSYNTHESIS AND EVOLUTION OF MASSIVE METAL-FREE STARS , 2008, 0803.3161.
[9] O. E. Bronson Messer,et al. 2D and 3D core-collapse supernovae simulation results obtained with the CHIMERA code , 2009, Journal of Physics: Conference Series.
[10] F. Thielemann,et al. Superheavy elements and r-process , 2009 .
[11] T. Rauscher,et al. Odd p isotope In-113: Measurement of alpha-induced reactions , 2009, 0906.4041.
[12] K. Kratz,et al. Co-Production of Light p-, s- and r-Process Isotopes in the High-Entropy Wind of Type II Supernovae , 2009, Publications of the Astronomical Society of Australia.
[13] S. Åberg,et al. Heavy-element fission barriers , 2009 .
[14] S. Goriely,et al. Skyrme-Hartree-Fock-Bogoliubov nuclear mass formulas: crossing the 0.6 MeV accuracy threshold with microscopically deduced pairing. , 2009, Physical review letters.
[15] A. Mezzacappa,et al. Signals of the QCD phase transition in core collapse supernovae—microphysical input and implications on the supernova dynamics , 2008, Physical review letters.
[16] Moscow,et al. On the dynamics of proto-neutron star winds and r-process nucleosynthesis , 2008, 0805.1848.
[17] K. Kotake,et al. SPECIAL RELATIVISTIC SIMULATIONS OF MAGNETICALLY DOMINATED JETS IN COLLAPSING MASSIVE STARS , 2007, 0712.1949.
[18] T. Fischer,et al. THE ISOTROPIC DIFFUSION SOURCE APPROXIMATION FOR SUPERNOVA NEUTRINO TRANSPORT , 2007, 0711.2929.
[19] A. Marek,et al. DELAYED NEUTRINO-DRIVEN SUPERNOVA EXPLOSIONS AIDED BY THE STANDING ACCRETION-SHOCK INSTABILITY , 2007, 0708.3372.
[20] Arjan J. Koning,et al. Towards prediction of fission cross section on the basis of microscopic nuclear inputs , 2009 .
[21] K. Kratz,et al. NUCLEOSYNTHESIS MODES IN THE HIGH-ENTROPY WIND OF TYPE II SUPERNOVAE: COMPARISON OF CALCULATIONS WITH HALO-STAR OBSERVATIONS , 2008, 0901.2541.
[22] T. Rauscher,et al. Coulomb suppression of the stellar enhancement factor. , 2008, Physical review letters.
[23] J. Rissanen,et al. Mass measurements in the vicinity of the r p-process and the nu p-process paths with the Penning trap facilities JYFLTRAP and SHIPTRAP , 2008, 0808.4065.
[24] A. J. Koning,et al. Improved predictions of nuclear reaction rates with the TALYS reaction code for astrophysical applications , 2008, 0806.2239.
[25] M. Hashimoto,et al. Nucleosynthesis in Magnetically Driven Jets from Collapsars , 2008, 0804.0969.
[26] K. Nomoto,et al. The r‐Process in Supersonic Neutrino‐Driven Winds: The Roll of Wind Termination Shock , 2007, 0707.2255.
[27] F. Thielemann,et al. p-Process simulations with a modified reaction library , 2008, 0805.4756.
[28] T. Rauscher,et al. Ge70(p,γ)As71 and Ge76(p,n)As76 cross sections for the astrophysical p process: Sensitivity of the optical proton potential at low energies , 2007, 0711.1079.
[29] G. Martínez-Pinedo,et al. The role of fission in the r-process , 2007 .
[30] G. Wasserburg,et al. Where, oh where has the r-process gone? , 2007, 0708.1767.
[31] L. Scheck,et al. Nucleosynthesis-relevant conditions in neutrino-driven supernova outflows. I. Spherically symmetric , 2006, astro-ph/0612582.
[32] H. Schatz,et al. Sensitivity of p-Process Nucleosynthesis to Nuclear Reaction Rates in a 25 M☉ Supernova Model , 2006, astro-ph/0608341.
[33] K. Nomoto,et al. Nucleosynthesis yields of core-collapse supernovae and hypernovae, and galactic chemical evolution , 2006, astro-ph/0605725.
[34] T. Rauscher,et al. alpha-induced cross sections of Cd-106 for the astrophysical p process , 2006, nucl-ex/0605034.
[35] C. Sneden,et al. Heavy element synthesis in the oldest stars and the early Universe , 2006, Nature.
[36] Aimee L. Hungerford,et al. Explosive Nucleosynthesis from Gamma-Ray Burst and Hypernova Progenitors: Direct Collapse versus Fallback , 2006, astro-ph/0604471.
[37] I. Ivans,et al. Near-Ultraviolet Observations of HD 221170: New Insights into the Nature of r-Process-rich Stars , 2006, astro-ph/0604180.
[38] S. Wanajo. The rp-Process in Neutrino-driven Winds , 2006, astro-ph/0602488.
[39] S. Ryan,et al. Neutron-Capture Elements in the Very Metal Poor Star HD 122563 , 2006, astro-ph/0602107.
[40] F. Thielemann,et al. Neutrino-induced nucleosynthesis of A>64 nuclei: the nu p process. , 2005, Physical review letters.
[41] T. Rauscher. Branchings in the gamma-process path revisited , 2005, astro-ph/0510710.
[42] H. Janka,et al. Nucleosynthesis in early supernova winds: the role of neutrinos , 2006 .
[43] Tsuneo Nakagawa,et al. Maxwellian-averaged neutron-induced reaction cross sections and astrophysical reaction rates for kT = 1 keV to 1 MeV calculated from microscopic neutron cross section library JENDL-3.3 , 2005 .
[44] W. Hix,et al. Nucleosynthesis in the Outflow from Gamma-Ray Burst Accretion Disks , 2005, astro-ph/0509365.
[45] F. Thielemann,et al. Calculations of fission rates for r-process nucleosynthesis , 2004, astro-ph/0412654.
[46] A. Mezzacappa,et al. Composition of the Innermost Core-Collapse Supernova Ejecta , 2004, astro-ph/0410208.
[47] N. Itoh,et al. The r-Process in Supernovae: Impact of New Microscopic Mass Formulae , 2004, astro-ph/0401412.
[48] T. Beers,et al. First stars V - Abundance patterns from C to Zn and supernova yields in the early Galaxy , 2003, astro-ph/0311082.
[49] C. Sneden,et al. # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. GALACTIC EVOLUTION OF Sr, Y, AND Zr: A MULTIPLICITY OF NUCLEOSYNTHETIC PROCESSES , 2003 .
[50] T. Kajino,et al. Nucleosynthesis of Light Elements and Heavy r-Process Elements through the ν-Process in Supernova Explosions , 2003, astro-ph/0305555.
[51] A. H. Wapstra,et al. The AME2003 atomic mass evaluation . (II). Tables, graphs and references , 2003 .
[52] P. Vogel,et al. Neutrino–nucleus reactions and nuclear structure , 2003, nucl-th/0311022.
[53] M. Arnould,et al. The p-process of stellar nucleosynthesis: astrophysics and nuclear physics status , 2003 .
[54] U. Washington,et al. Neutrino Nucleosynthesis , 2003, astro-ph/0307546.
[55] F. Thielemann,et al. Final r-process yields and the influence of fission: The competition between neutron-induced and β-delayed fission , 2003 .
[56] A. Cameron. Some Nucleosynthesis Effects Associated with r-Process Jets , 2003 .
[57] V. Hill,et al. The Extremely Metal-poor, Neutron Capture-rich Star CS 22892-052: A Comprehensive Abundance Analysis , 2003, astro-ph/0303542.
[58] B. Marty,et al. Short-lived p-nuclides in the early solar system and implications on the nucleosynthetic role of X-ray binaries , 2002, astro-ph/0211452.
[59] Adam Burrows,et al. Shock Breakout in Core-Collapse Supernovae and Its Neutrino Signature , 2002, astro-ph/0211194.
[60] G. Martínez-Pinedo,et al. Nuclear weak-interaction processes in stars , 2002, nucl-th/0203071.
[61] A. Chieffi,et al. The Explosive Yields Produced by the First Generation of Core Collapse Supernovae and the Chemical Composition of Extremely Metal Poor Stars , 2002, astro-ph/0205542.
[62] T. Beers,et al. First stars. I. The extreme r-element rich, iron-poor halo giant CS 31082-001 - Implications for the r-process site(s) and radioactive cosmochronology , 2002, astro-ph/0203462.
[63] Usa,et al. Nucleosynthesis in Massive Stars with Improved Nuclear and Stellar Physics , 2001, astro-ph/0112478.
[64] F. Thielemann,et al. Nuclear structure studies for the astrophysical r-process , 2001 .
[65] A. Burrows,et al. The Physics of Proto-Neutron Star Winds: Implications for r-Process Nucleosynthesis , 2001, astro-ph/0105004.
[66] T. Kajino,et al. The r-Process in Neutrino-driven Winds from Nascent, “Compact” Neutron Stars of Core-Collapse Supernovae , 2001, astro-ph/0102261.
[67] K. Nomoto,et al. Explosive Nucleosynthesis in Hypernovae , 2000, astro-ph/0011184.
[68] F. Thielemann,et al. Astrophysical reaction rates from statistical model calculations , 2000, astro-ph/0004059.
[69] H. Tagoshi,et al. General Relativistic Effects on Neutrino-driven Winds from Young, Hot Neutron Stars and r-Process Nucleosynthesis , 1999, astro-ph/9911164.
[70] S. Rosswog,et al. r-Process in Neutron Star Mergers , 1999, The Astrophysical journal.
[71] W. Myers,et al. Thomas-Fermi fission barriers , 1999 .
[72] K. Kratz,et al. The Astrophysical r-Process: A Comparison of Calculations following Adiabatic Expansion with Classical Calculations Based on Neutron Densities and Temperatures , 1999 .
[73] M. Rayet,et al. Large-scale fission-barrier calculations with the ETFSI method , 1998 .
[74] B. A. Brown,et al. rp-process nucleosynthesis at extreme temperature and density conditions , 1998 .
[75] B. Meyer,et al. Survey of r-Process Models , 1997 .
[76] K. Kratz,et al. Nuclear properties for astrophysical and radioactive-ion-beam applications (II) , 1997, Atomic Data and Nuclear Data Tables.
[77] C. Gutkin. Nucleosynthesis in Neutrino-driven Winds. II. Implications for Heavy Element Synthesis , 1996, astro-ph/9611097.
[78] S. Woosley,et al. Nucleosynthesis in Neutrino-Driven Winds. I. The Physical Conditions , 1996, astro-ph/9611094.
[79] S. Goriely,et al. Nuclear mass formula with Bogolyubov-enhanced shell-quenching: application to r-process , 1996 .
[80] G. Wasserburg,et al. Abundances of Actinides and Short-lived Nonactinides in the Interstellar Medium: Diverse Supernova Sources for the r-Processes , 1996 .
[81] J. Pearson,et al. Nuclear mass formula via an approximation to the hartree-fock method , 1995 .
[82] S. Woosley,et al. The Evolution and Explosion of Massive Stars. II. Explosive Hydrodynamics and Nucleosynthesis , 1995 .
[83] Zuker,et al. Microscopic mass formulas. , 1995, Physical review. C, Nuclear physics.
[84] W. Myers,et al. Nuclear ground state masses and deformations , 1993, nucl-th/9308022.
[85] Masa-Aki Hashimoto,et al. Core-Collapse Supernovae and Their Ejecta , 1995 .
[86] K. Nomoto,et al. The p-process in Type II supernovae. , 1995 .
[87] James R. Wilson,et al. The r-process and neutrino-heated supernova ejecta , 1994 .
[88] J. Cowan,et al. Production of heavy elements in inhomogeneous cosmologies , 1994 .
[89] K. Takahashi,et al. Nucleosynthesis in neutrino-driven winds from protoneutron stars II. The r-process , 1994 .
[90] H. A. Bethe,et al. Supernova mechanisms. [SN 1987a] , 1990 .
[91] C. Raiteri,et al. S-Process Nucleosynthesis: Classical Approach and Asymptotic Giant Branch Models for Low-Mass Stars , 1990 .
[92] N. Prantzos,et al. The p-process revisited , 1990 .
[93] W. Fowler,et al. Stellar weak interaction rates for intermediate-mass nuclei. IV - Interpolation procedures for rapidly varying lepton capture rates using effective log (ft)-values , 1985 .
[94] F. Thielemann,et al. Beta-delayed fission and neutron emission: Consequences for the astrophysicalr-process and the age of the galaxy , 1983 .