What are the astrophysical sites for the r-process and the production of heavy elements?

[1]  H. Umeda,et al.  NUCLEOSYNTHESIS IN HIGH-ENTROPY HOT BUBBLES OF SUPERNOVAE AND ABUNDANCE PATTERNS OF EXTREMELY METAL-POOR STARS , 2010, 1007.3998.

[2]  A. Burrows,et al.  DIMENSION AS A KEY TO THE NEUTRINO MECHANISM OF CORE-COLLAPSE SUPERNOVA EXPLOSIONS , 2010, 1006.3792.

[3]  L. Roberts,et al.  INTEGRATED NUCLEOSYNTHESIS IN NEUTRINO-DRIVEN WINDS , 2010, 1004.4916.

[4]  K. Kratz,et al.  CHARGED-PARTICLE AND NEUTRON-CAPTURE PROCESSES IN THE HIGH-ENTROPY WIND OF CORE-COLLAPSE SUPERNOVAE , 2010, 1002.2346.

[5]  F. Thielemann,et al.  Stellar (n,γ) cross sections of -process isotopes Part I: 102Pd, 120Te, 130,132Ba, and 156Dy , 2010, 1001.1906.

[6]  F. Thielemann,et al.  Neutron-induced astrophysical reaction rates for translead nuclei , 2009, 0911.2181.

[7]  A. Mezzacappa,et al.  Protoneutron star evolution and the neutrino-driven wind in general relativistic neutrino radiation hydrodynamics simulations , 2009, 0908.1871.

[8]  S. Woosley,et al.  NUCLEOSYNTHESIS AND EVOLUTION OF MASSIVE METAL-FREE STARS , 2008, 0803.3161.

[9]  O. E. Bronson Messer,et al.  2D and 3D core-collapse supernovae simulation results obtained with the CHIMERA code , 2009, Journal of Physics: Conference Series.

[10]  F. Thielemann,et al.  Superheavy elements and r-process , 2009 .

[11]  T. Rauscher,et al.  Odd p isotope In-113: Measurement of alpha-induced reactions , 2009, 0906.4041.

[12]  K. Kratz,et al.  Co-Production of Light p-, s- and r-Process Isotopes in the High-Entropy Wind of Type II Supernovae , 2009, Publications of the Astronomical Society of Australia.

[13]  S. Åberg,et al.  Heavy-element fission barriers , 2009 .

[14]  S. Goriely,et al.  Skyrme-Hartree-Fock-Bogoliubov nuclear mass formulas: crossing the 0.6 MeV accuracy threshold with microscopically deduced pairing. , 2009, Physical review letters.

[15]  A. Mezzacappa,et al.  Signals of the QCD phase transition in core collapse supernovae—microphysical input and implications on the supernova dynamics , 2008, Physical review letters.

[16]  Moscow,et al.  On the dynamics of proto-neutron star winds and r-process nucleosynthesis , 2008, 0805.1848.

[17]  K. Kotake,et al.  SPECIAL RELATIVISTIC SIMULATIONS OF MAGNETICALLY DOMINATED JETS IN COLLAPSING MASSIVE STARS , 2007, 0712.1949.

[18]  T. Fischer,et al.  THE ISOTROPIC DIFFUSION SOURCE APPROXIMATION FOR SUPERNOVA NEUTRINO TRANSPORT , 2007, 0711.2929.

[19]  A. Marek,et al.  DELAYED NEUTRINO-DRIVEN SUPERNOVA EXPLOSIONS AIDED BY THE STANDING ACCRETION-SHOCK INSTABILITY , 2007, 0708.3372.

[20]  Arjan J. Koning,et al.  Towards prediction of fission cross section on the basis of microscopic nuclear inputs , 2009 .

[21]  K. Kratz,et al.  NUCLEOSYNTHESIS MODES IN THE HIGH-ENTROPY WIND OF TYPE II SUPERNOVAE: COMPARISON OF CALCULATIONS WITH HALO-STAR OBSERVATIONS , 2008, 0901.2541.

[22]  T. Rauscher,et al.  Coulomb suppression of the stellar enhancement factor. , 2008, Physical review letters.

[23]  J. Rissanen,et al.  Mass measurements in the vicinity of the r p-process and the nu p-process paths with the Penning trap facilities JYFLTRAP and SHIPTRAP , 2008, 0808.4065.

[24]  A. J. Koning,et al.  Improved predictions of nuclear reaction rates with the TALYS reaction code for astrophysical applications , 2008, 0806.2239.

[25]  M. Hashimoto,et al.  Nucleosynthesis in Magnetically Driven Jets from Collapsars , 2008, 0804.0969.

[26]  K. Nomoto,et al.  The r‐Process in Supersonic Neutrino‐Driven Winds: The Roll of Wind Termination Shock , 2007, 0707.2255.

[27]  F. Thielemann,et al.  p-Process simulations with a modified reaction library , 2008, 0805.4756.

[28]  T. Rauscher,et al.  Ge70(p,γ)As71 and Ge76(p,n)As76 cross sections for the astrophysical p process: Sensitivity of the optical proton potential at low energies , 2007, 0711.1079.

[29]  G. Martínez-Pinedo,et al.  The role of fission in the r-process , 2007 .

[30]  G. Wasserburg,et al.  Where, oh where has the r-process gone? , 2007, 0708.1767.

[31]  L. Scheck,et al.  Nucleosynthesis-relevant conditions in neutrino-driven supernova outflows. I. Spherically symmetric , 2006, astro-ph/0612582.

[32]  H. Schatz,et al.  Sensitivity of p-Process Nucleosynthesis to Nuclear Reaction Rates in a 25 M☉ Supernova Model , 2006, astro-ph/0608341.

[33]  K. Nomoto,et al.  Nucleosynthesis yields of core-collapse supernovae and hypernovae, and galactic chemical evolution , 2006, astro-ph/0605725.

[34]  T. Rauscher,et al.  alpha-induced cross sections of Cd-106 for the astrophysical p process , 2006, nucl-ex/0605034.

[35]  C. Sneden,et al.  Heavy element synthesis in the oldest stars and the early Universe , 2006, Nature.

[36]  Aimee L. Hungerford,et al.  Explosive Nucleosynthesis from Gamma-Ray Burst and Hypernova Progenitors: Direct Collapse versus Fallback , 2006, astro-ph/0604471.

[37]  I. Ivans,et al.  Near-Ultraviolet Observations of HD 221170: New Insights into the Nature of r-Process-rich Stars , 2006, astro-ph/0604180.

[38]  S. Wanajo The rp-Process in Neutrino-driven Winds , 2006, astro-ph/0602488.

[39]  S. Ryan,et al.  Neutron-Capture Elements in the Very Metal Poor Star HD 122563 , 2006, astro-ph/0602107.

[40]  F. Thielemann,et al.  Neutrino-induced nucleosynthesis of A>64 nuclei: the nu p process. , 2005, Physical review letters.

[41]  T. Rauscher Branchings in the gamma-process path revisited , 2005, astro-ph/0510710.

[42]  H. Janka,et al.  Nucleosynthesis in early supernova winds: the role of neutrinos , 2006 .

[43]  Tsuneo Nakagawa,et al.  Maxwellian-averaged neutron-induced reaction cross sections and astrophysical reaction rates for kT = 1 keV to 1 MeV calculated from microscopic neutron cross section library JENDL-3.3 , 2005 .

[44]  W. Hix,et al.  Nucleosynthesis in the Outflow from Gamma-Ray Burst Accretion Disks , 2005, astro-ph/0509365.

[45]  F. Thielemann,et al.  Calculations of fission rates for r-process nucleosynthesis , 2004, astro-ph/0412654.

[46]  A. Mezzacappa,et al.  Composition of the Innermost Core-Collapse Supernova Ejecta , 2004, astro-ph/0410208.

[47]  N. Itoh,et al.  The r-Process in Supernovae: Impact of New Microscopic Mass Formulae , 2004, astro-ph/0401412.

[48]  T. Beers,et al.  First stars V - Abundance patterns from C to Zn and supernova yields in the early Galaxy , 2003, astro-ph/0311082.

[49]  C. Sneden,et al.  # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. GALACTIC EVOLUTION OF Sr, Y, AND Zr: A MULTIPLICITY OF NUCLEOSYNTHETIC PROCESSES , 2003 .

[50]  T. Kajino,et al.  Nucleosynthesis of Light Elements and Heavy r-Process Elements through the ν-Process in Supernova Explosions , 2003, astro-ph/0305555.

[51]  A. H. Wapstra,et al.  The AME2003 atomic mass evaluation . (II). Tables, graphs and references , 2003 .

[52]  P. Vogel,et al.  Neutrino–nucleus reactions and nuclear structure , 2003, nucl-th/0311022.

[53]  M. Arnould,et al.  The p-process of stellar nucleosynthesis: astrophysics and nuclear physics status , 2003 .

[54]  U. Washington,et al.  Neutrino Nucleosynthesis , 2003, astro-ph/0307546.

[55]  F. Thielemann,et al.  Final r-process yields and the influence of fission: The competition between neutron-induced and β-delayed fission , 2003 .

[56]  A. Cameron Some Nucleosynthesis Effects Associated with r-Process Jets , 2003 .

[57]  V. Hill,et al.  The Extremely Metal-poor, Neutron Capture-rich Star CS 22892-052: A Comprehensive Abundance Analysis , 2003, astro-ph/0303542.

[58]  B. Marty,et al.  Short-lived p-nuclides in the early solar system and implications on the nucleosynthetic role of X-ray binaries , 2002, astro-ph/0211452.

[59]  Adam Burrows,et al.  Shock Breakout in Core-Collapse Supernovae and Its Neutrino Signature , 2002, astro-ph/0211194.

[60]  G. Martínez-Pinedo,et al.  Nuclear weak-interaction processes in stars , 2002, nucl-th/0203071.

[61]  A. Chieffi,et al.  The Explosive Yields Produced by the First Generation of Core Collapse Supernovae and the Chemical Composition of Extremely Metal Poor Stars , 2002, astro-ph/0205542.

[62]  T. Beers,et al.  First stars. I. The extreme r-element rich, iron-poor halo giant CS 31082-001 - Implications for the r-process site(s) and radioactive cosmochronology , 2002, astro-ph/0203462.

[63]  Usa,et al.  Nucleosynthesis in Massive Stars with Improved Nuclear and Stellar Physics , 2001, astro-ph/0112478.

[64]  F. Thielemann,et al.  Nuclear structure studies for the astrophysical r-process , 2001 .

[65]  A. Burrows,et al.  The Physics of Proto-Neutron Star Winds: Implications for r-Process Nucleosynthesis , 2001, astro-ph/0105004.

[66]  T. Kajino,et al.  The r-Process in Neutrino-driven Winds from Nascent, “Compact” Neutron Stars of Core-Collapse Supernovae , 2001, astro-ph/0102261.

[67]  K. Nomoto,et al.  Explosive Nucleosynthesis in Hypernovae , 2000, astro-ph/0011184.

[68]  F. Thielemann,et al.  Astrophysical reaction rates from statistical model calculations , 2000, astro-ph/0004059.

[69]  H. Tagoshi,et al.  General Relativistic Effects on Neutrino-driven Winds from Young, Hot Neutron Stars and r-Process Nucleosynthesis , 1999, astro-ph/9911164.

[70]  S. Rosswog,et al.  r-Process in Neutron Star Mergers , 1999, The Astrophysical journal.

[71]  W. Myers,et al.  Thomas-Fermi fission barriers , 1999 .

[72]  K. Kratz,et al.  The Astrophysical r-Process: A Comparison of Calculations following Adiabatic Expansion with Classical Calculations Based on Neutron Densities and Temperatures , 1999 .

[73]  M. Rayet,et al.  Large-scale fission-barrier calculations with the ETFSI method , 1998 .

[74]  B. A. Brown,et al.  rp-process nucleosynthesis at extreme temperature and density conditions , 1998 .

[75]  B. Meyer,et al.  Survey of r-Process Models , 1997 .

[76]  K. Kratz,et al.  Nuclear properties for astrophysical and radioactive-ion-beam applications (II) , 1997, Atomic Data and Nuclear Data Tables.

[77]  C. Gutkin Nucleosynthesis in Neutrino-driven Winds. II. Implications for Heavy Element Synthesis , 1996, astro-ph/9611097.

[78]  S. Woosley,et al.  Nucleosynthesis in Neutrino-Driven Winds. I. The Physical Conditions , 1996, astro-ph/9611094.

[79]  S. Goriely,et al.  Nuclear mass formula with Bogolyubov-enhanced shell-quenching: application to r-process , 1996 .

[80]  G. Wasserburg,et al.  Abundances of Actinides and Short-lived Nonactinides in the Interstellar Medium: Diverse Supernova Sources for the r-Processes , 1996 .

[81]  J. Pearson,et al.  Nuclear mass formula via an approximation to the hartree-fock method , 1995 .

[82]  S. Woosley,et al.  The Evolution and Explosion of Massive Stars. II. Explosive Hydrodynamics and Nucleosynthesis , 1995 .

[83]  Zuker,et al.  Microscopic mass formulas. , 1995, Physical review. C, Nuclear physics.

[84]  W. Myers,et al.  Nuclear ground state masses and deformations , 1993, nucl-th/9308022.

[85]  Masa-Aki Hashimoto,et al.  Core-Collapse Supernovae and Their Ejecta , 1995 .

[86]  K. Nomoto,et al.  The p-process in Type II supernovae. , 1995 .

[87]  James R. Wilson,et al.  The r-process and neutrino-heated supernova ejecta , 1994 .

[88]  J. Cowan,et al.  Production of heavy elements in inhomogeneous cosmologies , 1994 .

[89]  K. Takahashi,et al.  Nucleosynthesis in neutrino-driven winds from protoneutron stars II. The r-process , 1994 .

[90]  H. A. Bethe,et al.  Supernova mechanisms. [SN 1987a] , 1990 .

[91]  C. Raiteri,et al.  S-Process Nucleosynthesis: Classical Approach and Asymptotic Giant Branch Models for Low-Mass Stars , 1990 .

[92]  N. Prantzos,et al.  The p-process revisited , 1990 .

[93]  W. Fowler,et al.  Stellar weak interaction rates for intermediate-mass nuclei. IV - Interpolation procedures for rapidly varying lepton capture rates using effective log (ft)-values , 1985 .

[94]  F. Thielemann,et al.  Beta-delayed fission and neutron emission: Consequences for the astrophysicalr-process and the age of the galaxy , 1983 .