Monte Carlo Registration and Its Application with Autonomous Robots

This work focuses on Monte Carlo registration methods and their application with autonomous robots. A streaming and an offline variant are developed, both based on a particle filter. The streaming registration is performed in real-time during data acquisition with a laser striper allowing for on-the-fly pose estimation. Thus, the acquired data can be instantly utilized, for example, for object modeling or robot manipulation, and the laser scan can be aborted after convergence. Curvature features are calculated online and the estimated poses are optimized in the particle weighting step. For sampling the pose particles, uniform, normal, and Bingham distributions are compared. The methods are evaluated with a high-precision laser striper attached to an industrial robot and with a noisy Time-of-Flight camera attached to service robots. The shown applications range from robot assisted teleoperation, over autonomous object modeling, to mobile robot localization.

[1]  Stefan Gumhold,et al.  Feature Extraction From Point Clouds , 2001, IMR.

[2]  Zoltan-Csaba Marton,et al.  Tutorial: Point Cloud Library: Three-Dimensional Object Recognition and 6 DOF Pose Estimation , 2012, IEEE Robotics & Automation Magazine.

[3]  John J. Leonard,et al.  Robust real-time visual odometry for dense RGB-D mapping , 2013, 2013 IEEE International Conference on Robotics and Automation.

[4]  Cordelia Schmid,et al.  Bandit Algorithms for Tree Search , 2007, UAI.

[5]  Markus H. Gross,et al.  Multi‐scale Feature Extraction on Point‐Sampled Surfaces , 2003, Comput. Graph. Forum.

[6]  Daniel Cremers,et al.  Robust odometry estimation for RGB-D cameras , 2013, 2013 IEEE International Conference on Robotics and Automation.

[7]  Darius Burschka,et al.  Real-time Image-based Localization for Hand-held 3D-modeling , 2010, KI - Künstliche Intelligenz.

[8]  Gerd Hirzinger,et al.  Hierarchical Featureless Tracking for Position-Based 6-DoF Visual Servoing , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[9]  Micha Sharir,et al.  Partial surface and volume matching in three dimensions , 1994, Proceedings of the 12th IAPR International Conference on Pattern Recognition, Vol. 3 - Conference C: Signal Processing (Cat. No.94CH3440-5).

[10]  Michael Suppa,et al.  Fusing Color and Geometry Information for Understanding Cluttered Scenes , 2014 .

[11]  Gerd Hirzinger,et al.  Capturing robot workspace structure: representing robot capabilities , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[12]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  J. Hintze,et al.  Violin plots : A box plot-density trace synergism , 1998 .

[14]  Jürgen Sturm,et al.  Evaluating Egomotion and Structure-from-Motion Approaches Using the TUM RGB-D Benchmark , 2012 .

[15]  Tim Bodenmüller,et al.  Streaming surface reconstruction from real time 3D-measurements , 2009 .

[16]  Nico Blodow,et al.  Fast Point Feature Histograms (FPFH) for 3D registration , 2009, 2009 IEEE International Conference on Robotics and Automation.

[17]  Kwang-Ho Bae Automated Registration of Unorganised Point Clouds from Terrestrial Laser Scanners , 2004 .

[18]  Henrik I. Christensen,et al.  RGB-D object tracking: A particle filter approach on GPU , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[19]  Shengyong Chen,et al.  Active vision in robotic systems: A survey of recent developments , 2011, Int. J. Robotics Res..

[20]  Kamal K. Gupta,et al.  An autonomous six-DOF eye-in-hand system for in situ 3D object modeling , 2012, Int. J. Robotics Res..

[21]  Nassir Navab,et al.  Model globally, match locally: Efficient and robust 3D object recognition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[22]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[23]  Simon Winkelbach Effiziente Methoden zum Lösen von 3D-Puzzle-Problemen* (Efficient Methods for Solving 3D-Puzzle-Problems) , 2008, it Inf. Technol..

[24]  Michael Suppa,et al.  Efficient next-best-scan planning for autonomous 3D surface reconstruction of unknown objects , 2013, Journal of Real-Time Image Processing.

[25]  Luis Enrique Sucar,et al.  View/state planning for three-dimensional object reconstruction under uncertainty , 2015, Autonomous Robots.

[26]  Leonidas J. Guibas,et al.  Robust global registration , 2005, SGP '05.

[27]  Markus H. Gross,et al.  Efficient simplification of point-sampled surfaces , 2002, IEEE Visualization, 2002. VIS 2002..

[28]  Nicholas Roy,et al.  Monte Carlo Pose Estimation with Quaternion Kernels and the Bingham Distribution , 2012 .

[29]  G. Roth,et al.  View planning for automated three-dimensional object reconstruction and inspection , 2003, CSUR.

[30]  Robert Sitnik,et al.  On-line, collision-free positioning of a scanner during fully automated three-dimensional measurement of cultural heritage objects , 2012, Robotics Auton. Syst..

[31]  Ulrich Hillenbrand Consistent parameter clustering: Definition and analysis , 2007, Pattern Recognit. Lett..

[32]  Steven M. LaValle,et al.  Generating Uniform Incremental Grids on SO(3) Using the Hopf Fibration , 2010, WAFR.

[33]  Gerd Hirzinger,et al.  The 3D-Modeller: A Multi-Purpose Vision Platform , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[34]  Wendelin Feiten,et al.  6D Pose Uncertainty in Robotic Perception , 2009 .

[35]  Julie C. Mitchell Sampling Rotation Groups by Successive Orthogonal Images , 2007, SIAM J. Sci. Comput..

[36]  Gerd Hirzinger,et al.  Tackling multi-sensory 3D data acquisition and fusion , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[37]  Zoltan-Csaba Marton,et al.  On-the-fly particle filter registration for laser data , 2016, 2016 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR).

[38]  Klaus H. Strobl A Flexible Approach to Close-Range 3-D Modeling , 2014 .

[39]  Micha Sharir,et al.  Partial surface matching by using directed footprints , 1996, SCG '96.

[40]  James Arvo,et al.  Fast Random Rotation matrices , 1992, Graphics Gems III.

[41]  Michael A. Sutton,et al.  Three-dimensional point cloud registration by matching surface features with relaxation labeling method , 2005 .

[42]  Yi-Ping Hung,et al.  RANSAC-Based DARCES: A New Approach to Fast Automatic Registration of Partially Overlapping Range Images , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[43]  Michael Isard,et al.  Contour Tracking by Stochastic Propagation of Conditional Density , 1996, ECCV.

[44]  Ken Shoemake,et al.  Uniform Random Rotations , 1992, Graphics Gems III.

[45]  Achim J. Lilienthal,et al.  Fast and accurate scan registration through minimization of the distance between compact 3D NDT representations , 2012, Int. J. Robotics Res..

[46]  Florian Schmidt,et al.  Multimodal telepresent control of DLR's Rollin' JUSTIN , 2009, 2009 IEEE International Conference on Robotics and Automation.

[47]  David Fofi,et al.  An efficient method for fully automatic 3D digitization of unknown objects , 2013, Comput. Ind..

[48]  Zoltan-Csaba Marton,et al.  Feature based particle filter registration of 3D surface models and its application in robotics , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[49]  Simon Kriegel,et al.  Streaming Monte Carlo Pose Estimation for Autonomous Object Modeling , 2016, 2016 13th Conference on Computer and Robot Vision (CRV).

[50]  Federico Tombari,et al.  Hough Voting for 3D Object Recognition under Occlusion and Clutter , 2012, IPSJ Trans. Comput. Vis. Appl..

[51]  Nico Blodow,et al.  Aligning point cloud views using persistent feature histograms , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[52]  Jared Glover,et al.  Bingham procrustean alignment for object detection in clutter , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.