Stepping Out of Equilibrium: The Quest for Understanding the Role of Non-Equilibrium (Thermo-)Dynamics in Electronic and Electrochemical Processes

This editorial aims to interest researchers and inspire novel research on the topic of non-equilibrium Thermodynamics and Monte Carlo for Electronic and Electrochemical Processes. We present a brief outline on recent progress and challenges in the study of non-equilibrium dynamics and thermodynamics using numerical Monte Carlo simulations. The aim of this special issue is to collect recent advances and novel techniques of Monte Carlo methods to study non-equilibrium electronic and electrochemical processes at the nanoscale.

[1]  A. Gagliardi,et al.  Kinetic Monte Carlo Study of the Role of the Energetic Disorder on the Open-circuit Voltage in Polymer:Fullerene Solar Cells. , 2019, The journal of physical chemistry letters.

[2]  Alyssa N. Brigeman,et al.  Nonthermal Site Occupation at the Donor-Acceptor Interface of Organic Solar Cells , 2018, Physical Review Applied.

[3]  Mehdi Ansari-Rad,et al.  Theoretical study of equilibrium and nonequilibrium exciton dynamics in disordered semiconductors , 2018, Physical Review B.

[4]  H. Bässler,et al.  Non-equilibrium transport of charge carriers in disordered organic materials , 2007 .

[5]  K. Reuter First‐Principles Kinetic Monte Carlo Simulations for Heterogeneous Catalysis: Concepts, Status, and Frontiers , 2011 .

[6]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[7]  Lin-Wang Wang,et al.  Charge carrier motion in disordered conjugated polymers: a multiscale Ab initio study. , 2009, Nano letters.

[8]  M. Rinderle,et al.  Machine-Learned Charge Transfer Integrals for Multiscale Simulations in Organic Thin Films , 2020 .

[9]  James C. Blakesley,et al.  Mesoscopic kinetic Monte Carlo modeling of organic photovoltaic device characteristics , 2012 .

[10]  Samantha N. Hood,et al.  Entropy and Disorder Enable Charge Separation in Organic Solar Cells. , 2016, The journal of physical chemistry letters.

[11]  Juliane Kniepert,et al.  Equilibrated Charge Carrier Populations Govern Steady-State Nongeminate Recombination in Disordered Organic Solar Cells. , 2019, The journal of physical chemistry letters.

[12]  A. Badinski,et al.  Parameter-free continuous drift-diffusion models of amorphous organic semiconductors. , 2015, Physical chemistry chemical physics : PCCP.

[13]  Johannes Popp,et al.  Generalized Kinetic Monte Carlo Framework for Organic Electronics , 2018, Algorithms.

[14]  B. Gregg Entropy of Charge Separation in Organic Photovoltaic Cells: The Benefit of Higher Dimensionality , 2011 .

[15]  Weimin M. Chen,et al.  Nonequilibrium site distribution governs charge-transfer electroluminescence at disordered organic heterointerfaces , 2019, Proceedings of the National Academy of Sciences.

[16]  Richard D. Braatz,et al.  Direct coupling of continuum and kinetic Monte Carlo models for multiscale simulation of electrochemical systems , 2019, Comput. Chem. Eng..

[17]  Massimiliano Esposito,et al.  Ensemble and trajectory thermodynamics: A brief introduction , 2014, 1403.1777.

[18]  F. Laquai,et al.  Ultrafast Charge Dynamics in Dilute-Donor versus Highly Intermixed TAPC:C60 Organic Solar Cell Blends. , 2020, The journal of physical chemistry letters.

[19]  Adam P. Willard,et al.  The Enhancement of Interfacial Exciton Dissociation by Energetic Disorder Is a Nonequilibrium Effect , 2017, ACS central science.

[20]  M. Jørgensen,et al.  Scaling Relations and Kinetic Monte Carlo Simulations To Bridge the Materials Gap in Heterogeneous Catalysis , 2017 .

[21]  A. Troisi,et al.  Modelling charge transport in organic semiconductors: from quantum dynamics to soft matter. , 2008, Physical chemistry chemical physics : PCCP.

[22]  U. Seifert Stochastic thermodynamics, fluctuation theorems and molecular machines , 2012, Reports on progress in physics. Physical Society.