Reliable computation of equilibrium states and bifurcations in ecological systems analysis

A problem of frequent interest in analyzing nonlinear ODE models of ecological systems is the location of equilibrium states and bifurcations. Interval-Newton techniques are explored for identifying, with certainty, all equilibrium states and all codimension-one and codimension-two bifurcations of interest within specified model parameter intervals. The methodology is applied to a tritrophic food chain in a chemostat (Canale's model), and a modification of thereof. This modification aids in elucidating the nonlinear effects of introducing a hypothetical contaminant into a food chain.

[1]  S. Rinaldi,et al.  Food chains in the chemostat: Relationships between mean yield and complex dynamics , 1998 .

[2]  Eric R. Ziegel,et al.  Ecological Risk Estimation , 1994 .

[3]  M. Stadtherr,et al.  Octanol–water partition coefficients of imidazolium-based ionic liquids , 2005 .

[4]  D. Gorman-Lewis,et al.  Experimental study of the adsorption of an ionic liquid onto bacterial and mineral surfaces. , 2004, Environmental science & technology.

[5]  Willy Govaerts,et al.  MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs , 2003, TOMS.

[6]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[7]  Wataru Naito,et al.  Evaluation of an ecosystem model in ecological risk assessment of chemicals. , 2003, Chemosphere.

[8]  Scott Ferson,et al.  Role of Ecological Modeling in Risk Assessment , 2003 .

[9]  Glenn W. Suter,et al.  Ecological risk assessment , 2006 .

[10]  Wataru Naito,et al.  Application of an ecosystem model for aquatic ecological risk assessment of chemicals for a Japanese lake. , 2002, Water research.

[11]  M. El-Sheikh,et al.  Stability and bifurcation of a simple food chain in a chemostat with removal rates , 2005 .

[12]  B W Kooi,et al.  Food chain dynamics in the chemostat. , 1998, Mathematical biosciences.

[13]  S. Ferson,et al.  Realism and Relevance of Ecological Models Used in Chemical Risk Assessment , 2003 .

[14]  Thomas F. Fairgrieve,et al.  AUTO 2000 : CONTINUATION AND BIFURCATION SOFTWARE FOR ORDINARY DIFFERENTIAL EQUATIONS (with HomCont) , 1997 .

[15]  Martin Mönnigmann,et al.  Normal Vectors on Manifolds of Critical Points for Parametric Robustness of Equilibrium Solutions of ODE Systems , 2002, J. Nonlinear Sci..

[16]  Sebastiaan A.L.M. Kooijman,et al.  Complex dynamic behaviour of autonomous microbial food chains , 1997 .

[17]  B W Kooi,et al.  Numerical Bifurcation Analysis of Ecosystems in a Spatially Homogeneous Environment , 2003, Acta biotheoretica.

[18]  Wellesley Site,et al.  What is an Ecological Risk Assessment ? , 2004 .

[19]  S. Ellner,et al.  Crossing the hopf bifurcation in a live predator-prey system. , 2000, Science.

[20]  Luc Jaulin,et al.  Applied Interval Analysis , 2001, Springer London.

[21]  Charles F. Kulpa,et al.  Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids , 2005 .

[22]  Willy Govaerts,et al.  Numerical methods for bifurcations of dynamical equilibria , 1987 .

[23]  B. Ondruschka,et al.  Biological effects of imidazolium ionic liquids with varying chain lengths in acute Vibrio fischeri and WST-1 cell viability assays. , 2004, Ecotoxicology and environmental safety.

[24]  M. Berz,et al.  TAYLOR MODELS AND OTHER VALIDATED FUNCTIONAL INCLUSION METHODS , 2003 .

[25]  P. Stepnowski,et al.  Evaluating the cytotoxicity of ionic liquids using human cell line HeLa , 2004, Human & experimental toxicology.

[26]  Seyed M. Moghadas,et al.  Dynamical and numerical analyses of a generalized food-chain model , 2003, Appl. Math. Comput..

[27]  R. Seydel From Equilibrium to Chaos: Practical Bifurcation and Stability Analysis , 1988 .

[28]  J. A. Kuznecov Elements of applied bifurcation theory , 1998 .

[29]  Mark A. Stadtherr,et al.  New interval methodologies for reliable chemical process modeling , 2002 .

[30]  J. Brennecke,et al.  Ionic liquids: Innovative fluids for chemical processing , 2001 .

[31]  A. Neumaier Interval methods for systems of equations , 1990 .

[32]  Robert A. Pastorok,et al.  Introduction: Improving Chemical Risk Assessments through Ecological Modeling , 2003 .

[33]  S. Bartell,et al.  An ecosystem model for assessing ecological risks in Québec rivers, lakes, and reservoirs , 1999 .

[34]  Randall J. Bernot,et al.  Acute and chronic toxicity of imidazolium‐based ionic liquids on Daphnia magna , 2005, Environmental toxicology and chemistry.

[35]  J. Pernak,et al.  Anti-microbial activities of ionic liquids , 2003 .

[36]  Randall J. Bernot,et al.  Effects of ionic liquids on the survival, movement, and feeding behavior of the freshwater snail, Physa acuta , 2005, Environmental toxicology and chemistry.

[37]  C. Bischof,et al.  VERIFIED DETERMINATION OF SINGULARITIES IN CHEMICAL PROCESSES , 2001 .

[38]  R. B. Kearfott Rigorous Global Search: Continuous Problems , 1996 .

[39]  Mark P. Styczynski,et al.  Reliable computation of equilibrium states and bifurcations in food chain models , 2004, Comput. Chem. Eng..

[40]  M. Stadtherr,et al.  Robust process simulation using interval methods , 1996 .

[41]  Wolfgang Marquardt,et al.  A singularity theory approach to the study of reactive distillation , 1997 .

[42]  Haiyi Lu,et al.  Development and Application of Computer Simulation Tools for Ecological Risk Assessment , 2003 .