A systematic DFT study of hydrogen diffusion on transition metal surfaces

Abstract Density functional theory calculations of the diffusion of hydrogen atoms on 23 transition metal surfaces in their closed-packed structure have been carried out. The d-metals chosen are all the metals in the 4th, 5th and 6th periods, from Sc to Au, except Mn, Tc, and Hf. Potential energy surfaces of H atom on these metals are constructed and the diffusion barrier from one minima to another is compared with nudged elastic band calculations. Most of the minimum energy paths have a single activation barrier, except on two surfaces where a dip in the bridge position (W and Pt) is observed. Trends in the adsorption and activation energies are observed where the former is explained with the d-band model. All the activation energies for diffusion are relatively low, or from 0.04 eV for Pt to 0.28 eV on Y and Zr. Finally, we estimate the temperature where tunneling effects should start to take place.

[1]  M. Mavrikakis,et al.  Hydrogen adsorption, absorption and diffusion on and in transition metal surfaces: A DFT study , 2012 .

[2]  J. Nørskov,et al.  Quantum Motion of Chemisorbed Hydrogen on Ni Surfaces , 1983 .

[3]  J. Nørskov,et al.  Effective-medium theory of chemical binding: Application to chemisorption , 1980 .

[4]  P. Ross,et al.  Surface science studies of model fuel cell electrocatalysts , 2002 .

[5]  G. Wahnström,et al.  Activation energies for quantum diffusion of hydrogen in metals and on metal surfaces using delocalized nuclei within the density-functional theory. , 2004, Physical review letters.

[6]  H. Jónsson,et al.  Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt(111) electrode. , 2007, Physical chemistry chemical physics : PCCP.

[7]  G. Wahnström,et al.  Quantum treatment of H adsorbed on a Pt(111) surface , 2001 .

[8]  M. Mavrikakis,et al.  Surface and subsurface hydrogen: adsorption properties on transition metals and near-surface alloys. , 2005, The journal of physical chemistry. B.

[9]  Xiangdong Zhu,et al.  Diffusion of Hydrogen on Ni(111) over a Wide Range of Temperature: Exploring Quantum Diffusion on Metals , 1997 .

[10]  G. Wahnström,et al.  Hydrogen tunneling on a metal surface: A density-functional study of H and D atoms on Cu(001) , 2005 .

[11]  H. Jónsson,et al.  Reentrant mechanism for associative desorption: H2/Pt(110)-(1×2). , 2012, Physical review letters.

[12]  Hannes Jónsson,et al.  Simulation of surface processes , 2011, Proceedings of the National Academy of Sciences.

[13]  Gregory K. Schenter,et al.  Generalized path integral based quantum transition state theory , 1997 .

[14]  J. Nørskov,et al.  Ammonia Synthesis from First-Principles Calculations , 2005, Science.

[15]  G. Olah,et al.  Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. , 2009, The Journal of organic chemistry.

[16]  K. B. Whaley,et al.  Quantum diffusion of hydrogen on metal surfaces , 1986 .

[17]  J. Nørskov,et al.  Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals , 1999 .

[18]  A. Gross,et al.  Hydrogen dissociation dynamics on precovered Pd surfaces: Langmuir is still right. , 2007, Physical review letters.

[19]  Ture R. Munter,et al.  Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. , 2007, Physical review letters.

[20]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[21]  G. Henkelman,et al.  Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points , 2000 .

[22]  G. Wahnström,et al.  Quantum motion of hydrogen on Cu(001) using first-principles calculations , 2004 .

[23]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[24]  Ho,et al.  Direct observation of the quantum tunneling of single hydrogen atoms with a scanning tunneling microscope , 2000, Physical review letters.

[25]  Quantum-mechanical calculation of H on Ni(001) using a model potential based on first-principles calculations , 1997 .

[26]  F. Illas,et al.  When Langmuir is too simple: H2 dissociation on Pd(111) at high coverage. , 2004, Physical review letters.

[27]  Philip N. Ross,et al.  TEMPERATURE-DEPENDENT HYDROGEN ELECTROCHEMISTRY ON PLATINUM LOW-INDEX SINGLE-CRYSTAL SURFACES IN ACID SOLUTIONS , 1997 .

[28]  J. Nørskov,et al.  Why gold is the noblest of all the metals , 1995, Nature.

[29]  T. Ala‐Nissila,et al.  Energetics and vibrational states for hydrogen on Pt(111). , 2002, Physical review letters.

[30]  H. Jónsson,et al.  Predicting catalysis: understanding ammonia synthesis from first-principles calculations. , 2006, The journal of physical chemistry. B.

[31]  Michele Parrinello,et al.  Ab initio path-integral molecular dynamics , 1994 .

[32]  A. Graham,et al.  Quasielastic helium atom scattering measurements of microscopic diffusional dynamics of H and D on the Pt(111) surface , 1999 .

[33]  Wilkins,et al.  Adsorption site, adsorption energy and normal vibration frequency of H on Ni(100) via total-energy calculations. , 1985, Physical review letters.

[34]  Thomas F. Jaramillo,et al.  Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts , 2007, Science.

[35]  A. Gross,et al.  Challenges in the first-principles description of reactions in electrocatalysis , 2011 .

[36]  Klaus Christmann,et al.  Interaction of hydrogen with solid surfaces , 1988 .

[37]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[38]  Hannes Jónsson,et al.  Path Optimization with Application to Tunneling , 2010, PARA.

[39]  Thomas Bligaard,et al.  Modeling the Electrochemical Hydrogen Oxidation and Evolution Reactions on the Basis of Density Functional Theory Calculations , 2010 .

[40]  Monceau,et al.  Phase slippage and narrow-band noise in TaS3 at low temperatures. , 1992, Physical review. B, Condensed matter.

[41]  J. Nørskov,et al.  Universal transition state scaling relations for (de)hydrogenation over transition metals. , 2011, Physical chemistry chemical physics : PCCP.

[42]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[43]  Frank Moss,et al.  Neurons in parallel , 1995, Nature.

[44]  Thomas Bligaard,et al.  Trends in the exchange current for hydrogen evolution , 2005 .

[45]  Quantum diffusion of H/Ni(111) through a Monte Carlo wave function formalism. , 2001, Physical review letters.

[46]  J. Light,et al.  Surface self-diffusion of hydrogen on Cu(100): A quantum kinetic equation approach , 2000 .

[47]  M. Loy,et al.  Quantum diffusion of H on Pt(111): step effects. , 2006, Physical review letters.

[48]  Tennyson Smith Measurement of the growth of sub-microscopic fatigue cracks by ellipsometry , 1974 .

[49]  W. Goddard,et al.  Chemisorption of Atomic Hydrogen on Large-Nickel-Cluster Surfaces , 1979 .