On $ q $-analogue of meromorphic multivalent functions in lemniscate of Bernoulli domain

Utilizing the concepts from $ q $-calculus in the field of geometric function theory, we introduce a subclass of $ p $-valent meromorphic functions relating to the domain of lemniscate of Bernoulli. The well known problem of Fekete-Szego for this class is evaluated. Also some geometric results related to subordinations are evaluated for this class in connection with Janowski functions.

[1]  T. M. Seoudy,et al.  Coefficient estimates of new classes of q-starlike and q-convex functions of complex order , 2016 .

[2]  R. Omar,et al.  APPLICATIONS OF CERTAIN FUNCTIONS ASSOCIATED WITH LEMNISCATE BERNOULLI , 2012 .

[3]  Maslina Darus,et al.  Some Subordination Results on -Analogue of Ruscheweyh Differential Operator , 2014 .

[4]  Shahid Mahmood,et al.  New Subclass of Analytic Functions in Conical Domain Associated with Ruscheweyh q-Differential Operator , 2017 .

[5]  H. Srivastava,et al.  Fekete-Szegö Type Problems and Their Applications for a Subclass of q-Starlike Functions with Respect to Symmetrical Points , 2020, Mathematics.

[6]  Janusz Sokół,et al.  Coefficient Estimates in a Class of Strongly Starlike Functions , 2009 .

[7]  S. Kavitha,et al.  On (p, q)-Quantum Calculus Involving Quasi-Subordination , 2018 .

[8]  V. Ravichandran,et al.  DIFFERENTIAL SUBORDINATION FOR FUNCTIONS ASSOCIATED WITH THE LEMNISCATE OF BERNOULLI , 2012 .

[9]  A. George,et al.  GEOMETRIC AND APPROXIMATION PROPERTIES OF GENERALIZED SINGULAR INTEGRALS IN THE UNIT DISK , 2006 .

[10]  Hari M. Srivastava,et al.  An Upper Bound of the Third Hankel Determinant for a Subclass of q-Starlike Functions Associated with k-Fibonacci Numbers , 2020, Symmetry.

[11]  B. S. Mehrok,et al.  A coefficient inequality for certain classes of analytic functions , 1969 .

[13]  G. Murugusundaramoorthy,et al.  A subordination results for a class of analytic functions defined by q-differential operator , 2020 .

[14]  Saqib Hussain,et al.  New Subclass of Analytic Functions in Conical Domain Associated with Ruscheweyh q-Differential Operator , 2018 .

[15]  D. Bansal,et al.  CLOSE-TO-CONVEXITY OF A CERTAIN FAMILY OF q-MITTAG-LEFFLER FUNCTIONS , 2017 .

[16]  M. Fekete,et al.  Eine Bemerkung Über Ungerade Schlichte Funktionen , 1933 .

[17]  W. Janowski,et al.  Extremal problems for a family of functions with positive real part and for some related families , 1970 .

[18]  B. Frasin,et al.  New Subclasses of Analytic Function Associated with q-Difference Operator , 2017 .

[19]  H. Srivastava,et al.  Some general families of q-starlike functions associated with the Janowski functions , 2019, Filomat.

[20]  H. Srivastava,et al.  A Study of Some Families of Multivalent q-Starlike Functions Involving Higher-Order q-Derivatives , 2020, Mathematics.

[21]  Stanisława Kanas,et al.  Some class of analytic functions related to conic domains , 2014 .

[22]  Mohamed Kamal Aouf,et al.  Convolution Properties for Certain Classes of Analytic Functions Defined by -Derivative Operator , 2014 .

[23]  A. Wiśniowska Geometric characterization of strongly starlike functions , 2000 .

[25]  On q-Baskakov type operators , 2009 .

[26]  Muhammad Ghaffar Khan,et al.  Q-Extension of Starlike Functions Subordinated with a Trigonometric Sine Function , 2020, Mathematics.

[27]  A. Pfluger The fekete—szegö inequality for complex parameters , 1986 .

[28]  A. Aral,et al.  Generalized q-Baskakov operators , 2011 .