( PO 4 ) ( CO 3 ) ] F , the first CO 3-bearing intercalated 2 hexagonal antiperovskite from Negev Desert , Israel

17 The new mineral stracherite, BaCa6(SiO4)2[(PO4)(CO3)]F (R 3 m, a = 7.0877(5) Å, c = 18 25.201(2) Å, V = 1096.4(1) Å, Z = 3), belongs to the zadovite group, which also includes 19 zadovite, BaCa6[(SiO4)(PO4)](PO4)2F; aradite, BaCa6[(SiO4)(VO4)](VO4)2F and gazeevite, 20 BaCa6(SiO4)2(SO4)2O. All minerals of this group exhibit single-layer antiperovskite modules, 21 which are intercalated with tetrahedral layers. In stracherite, the first СО3-bearing intercalated 22 hexagonal antiperovskite, about 38% of the (PO4) tetrahedra are randomly substituted by 23 planar (CO3) groups. The mineral was discovered in spurrite rocks of the Hatrurim Complex 24 in the Negev Desert near Arad, Israel. Associated minerals are spurrite, calcite, 25

[1]  T. Armbruster,et al.  New minerals with modular structure derived from hatrurite from the pyrometamorphic rocks. Part IV: Dargaite, BaCa12(SiO4)4(SO4)2O3, from Nahal Darga, Palestinian Autonomy , 2018, Mineralogical Magazine.

[2]  J. Wojdyla,et al.  New Mineral with Modular Structure Derived from Hatrurite from the Pyrometamorphic Rocks of the Hatrurim Complex: Ariegilatite, BaCa12(SiO4)4(PO4)2F2O, from Negev Desert, Israel , 2018 .

[3]  S. Krivovichev Minerals with antiperovskite structure: a review , 2008 .

[4]  J. Mandarino,et al.  THE GLADSTONE–DALE COMPATIBILITY OF MINERALS AND ITS USE IN SELECTING MINERAL SPECIES FOR FURTHER STUDY , 2007 .

[5]  F. Hawthorne,et al.  POLYPHITE AND SOBOLEVITE: REVISION OF THEIR CRYSTAL STRUCTURES , 2005 .

[6]  M. Fleet,et al.  Location of type B carbonate ion in type A–B carbonate apatite synthesized at high pressure , 2004 .

[7]  F. Hawthorne,et al.  THE CRYSTAL CHEMISTRY OF THE [M3ϕ11–14] TRIMERIC STRUCTURES: FROM HYPERAGPAITIC COMPLEXES TO SALINE LAKES , 2001 .

[8]  Yu Liu,et al.  CO3 substitution in apatite further insight from new crystal-chemical data of Kasekere (Uganda) apatite , 2000 .

[9]  C. Rey,et al.  MicroRaman Spectral Study of the PO4 and CO3 Vibrational Modes in Synthetic and Biological Apatites , 1998, Calcified Tissue International.

[10]  K. Crowley,et al.  Structural variations in natural F, OH, and Cl apatites , 1989 .

[11]  I. D. Brown,et al.  Bond‐valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database , 1985 .

[12]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[13]  L. Gnar CRYSTALLOGRAPHIC TABLES FOR THE RHOMBOHEDRAL CARBONATES , 2007 .

[14]  V. Sharygin,et al.  Paralavas in a combustion metamorphic complex: Hatrurim Basin, Israel , 2007 .

[15]  J. Jeffery The crystal structure of tricalcium silicate , 1952 .