Research on visual servo grasping of household objects for nonholonomic mobile manipulator

This paper focuses on the problem of visual servo grasping of household objects for nonholonomic mobile manipulator. Firstly, a new kind of artificial object mark based on QR (Quick Response) Code is designed, which can be affixed to the surface of household objects. Secondly, after summarizing the vision-based autonomous mobile manipulation system as a generalized manipulator, the generalized manipulator's kinematic model is established, the analytical inverse kinematic solutions of the generalized manipulator are acquired, and a novel active vision based camera calibration method is proposed to determine the hand-eye relationship. Finally, a visual servo switching control law is designed to control the service robot to finish object grasping operation. Experimental results show that QR Code-based artificial object mark can overcome the difficulties brought by household objects' variety and operation complexity, and the proposed visual servo scheme makes it possible for service robot to grasp and deliver objects efficiently.

[1]  William J. Wilson,et al.  Relative end-effector control using Cartesian position based visual servoing , 1996, IEEE Trans. Robotics Autom..

[2]  Danica Kragic,et al.  Object detection and mapping for service robot tasks , 2007, Robotica.

[3]  François Chaumette,et al.  2 1/2 D Visual Servoing with Respect to Unknown Objects Through a New Estimation Scheme of Camera Displacement , 2000, International Journal of Computer Vision.

[4]  Andrew A. Goldenberg,et al.  Robust damping control of mobile manipulators , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[5]  Ronald A. Hess,et al.  Interaction Control of a Redundant Mobile Manipulator , 1998, Int. J. Robotics Res..

[6]  François Chaumette,et al.  Visual servo control. I. Basic approaches , 2006, IEEE Robotics & Automation Magazine.

[7]  Miroslaw Galicki,et al.  Control of Mobile Manipulators in a Task Space $ $ , 2012, IEEE Transactions on Automatic Control.

[8]  George K. I. Mann,et al.  Vision-based hybrid control scheme for autonomous parking of a mobile robot , 2007, Adv. Robotics.

[9]  Peter I. Corke,et al.  A tutorial on visual servo control , 1996, IEEE Trans. Robotics Autom..

[10]  José Santos-Victor,et al.  Visual servoing and appearance for navigation , 2000, Robotics Auton. Syst..

[11]  François Chaumette,et al.  Path planning in image space for robust visual servoing , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[12]  Peter I. Corke,et al.  A new partitioned approach to image-based visual servo control , 2001, IEEE Trans. Robotics Autom..

[13]  François Chaumette,et al.  Visual servo control. II. Advanced approaches [Tutorial] , 2007, IEEE Robotics & Automation Magazine.

[14]  Giuseppe Oriolo,et al.  Image-based visual servoing schemes for nonholonomic mobile manipulators , 2007, Robotica.

[15]  Motoji Yamamoto,et al.  Trajectory planning of mobile manipulator with end-effector's specified path , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[16]  Tatsuo Arai,et al.  Real-time trajectory planning for mobile manipulator using model predictive control with constraints , 2011, 2011 8th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI).

[17]  Jing Xiao,et al.  Real-Time Adaptive Motion Planning (RAMP) of Mobile Manipulators in Dynamic Environments With Unforeseen Changes , 2008, IEEE Transactions on Robotics.

[18]  Zhengyou Zhang,et al.  A Flexible New Technique for Camera Calibration , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Philippe Martinet,et al.  Position based visual servoing: keeping the object in the field of vision , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[20]  Alicja Mazur Hybrid adaptive control laws solving a path following problem for non-holonomic mobile manipulators , 2004 .

[21]  Ying Wang,et al.  A Hybrid Visual Servo Controller for Robust Grasping by Wheeled Mobile Robots , 2010, IEEE/ASME Transactions on Mechatronics.

[22]  Tarek Hamel,et al.  Dynamic Image-Based Visual Servo Control Using Centroid and Optic Flow Features , 2008 .

[23]  François Chaumette,et al.  2½D visual servoing , 1999, IEEE Trans. Robotics Autom..

[24]  Bruce H. Krogh,et al.  Path planning for mobile manipulators for multiple task execution , 1991, IEEE Trans. Robotics Autom..

[25]  Anders Green,et al.  Social and collaborative aspects of interaction with a service robot , 2003, Robotics Auton. Syst..

[26]  Olivier Stasse,et al.  Visually-Guided Grasping while Walking on a Humanoid Robot , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[27]  J. Jakubiak,et al.  Regular Jacobian motion planning algorithms for mobile manipulators , 2002 .

[28]  Qiang Huang,et al.  Coordinated Motion Planning for a Mobile Manipulator considering Stability and Manipulation , 2000, Int. J. Robotics Res..

[29]  Musa Mailah,et al.  Robust Motion Control for Mobile Manipulator Using Resolved Acceleration and Proportional-Integral Active Force Control , 2005, ArXiv.

[30]  François Chaumette,et al.  Theoretical improvements in the stability analysis of a new class of model-free visual servoing methods , 2002, IEEE Trans. Robotics Autom..

[31]  E. Malis,et al.  2 1/2 D Visual Servoing , 1999 .

[32]  Warren E. Dixon,et al.  Adaptive tracking control of a wheeled mobile robot via an uncalibrated camera system , 2001, IEEE Trans. Syst. Man Cybern. Part B.