Macaulay Posets
暂无分享,去创建一个
[1] Bernt Lindström,et al. The optimal number of faces in cubical complexes , 1971 .
[2] S. Bezrukov. Isoperimetric Problems in Discrete Spaces , 2002 .
[3] Sergei L. Bezrukov. Minimization of Surrounding of Subsets in Hamming Space , 2002 .
[4] R Udolf,et al. General Edge-isoperimetric Inequalities , Part II : a Local – Global Principle for Lexicographical Solutions , .
[5] Attila Sali. Constructions of ranked posets , 1988, Discret. Math..
[6] Robert Elsässer,et al. The Spider Poset Is Macaulay , 2000, J. Comb. Theory, Ser. A.
[7] Konrad Engel,et al. Sperner theory in partially ordered sets , 1985 .
[8] D. E. Daykin,et al. Ordering Integer Vectors for Coordinate Deletions , 1997 .
[9] Uwe Leck. Nonexistence of a Kruskal-Katona Type Theorem for Subword Orders , 2004, Comb..
[10] Béla Bollobás,et al. Exact Face-isoperimetric Inequalities , 1990, Eur. J. Comb..
[11] Andrew Frohmader,et al. A Kruskal-Katona type theorem for graphs , 2007, J. Comb. Theory, Ser. A.
[12] N. Alon. Independent sets in regular graphs and sum-free subsets of finite groups , 1991 .
[13] D. E. Daykin. An Isoperimetric Problem on a Lattice , 1973 .
[14] Eran London. A new proof of the colored Kruskal - Katona theorem , 1994, Discret. Math..
[15] On the shadow of squashed families of k-sets , 1995, Electron. J. Comb..
[16] K. Engel. Sperner Theory , 1996 .
[17] B. Lindström,et al. A Generalization of a Combinatorial Theorem of Macaulay , 1969 .
[18] G. Katona. A theorem of finite sets , 2009 .
[19] R. Stanley. Combinatorics and commutative algebra , 1983 .
[20] G. Clements. Additive Macaulay Posets , 1997 .
[21] Sergei L. Bezrukov. On an equivalence in discrete extremal problems , 1999, Discret. Math..
[22] Peter Frankl,et al. A new short proof for the Kruskal-Katona theorem , 1984, Discret. Math..
[23] L. H. Harper. Optimal numberings and isoperimetric problems on graphs , 1966 .
[24] Rudolf Ahlswede,et al. Contributions to the geometry of hamming spaces , 1977, Discret. Math..
[25] G. F. Clements,et al. The cubical poset is additive , 1997, Discret. Math..
[26] Rudolf Ahlswede,et al. Shadows and isoperimetry under the sequence-subsequence relation , 1997, Comb..
[27] Charles J. Colbourn,et al. The Combinatorics of Network Reliability , 1987 .
[28] Charles J. Colbourn,et al. Lower bounds on two-terminal network reliability , 1988, Discret. Appl. Math..
[29] Sergei L. Bezrukov. ON THE CONSTRUCTION OF SOLUTIONS OF A DISCRETE ISOPERIMETRIC PROBLEM IN HAMMING SPACE , 1989 .
[30] R. Labahn. Maximizing antichains in the cube with fixed size of a shadow , 1992 .
[31] F. S. Macaulay. Some Properties of Enumeration in the Theory of Modular Systems , 1927 .
[32] A. A. SAPOZHENKO. The number of antichains in ranked posets , 1991 .
[33] Uwe Leck. Another Generalization of Lindström's Theorem on Subcubes of a Cube , 2002, J. Comb. Theory, Ser. A.
[34] Peter Frankl. A lower bound on the size of a complex generated by an antichain , 1989, Discret. Math..
[35] Extremal Ideals of the Lattice of Multisets , 2002 .
[36] David E. Daykin,et al. A Simple Proof of the Kruskal-Katona Theorem , 1974, J. Comb. Theory, Ser. A.
[37] Robert Elsässer,et al. Edge-Isoperimetric Problems for Cartesian Powers of Regular Graphs , 2001, WG.
[38] Zoltán Füredi,et al. Families of finite sets with minimum shadows , 1986, Comb..
[39] H. J. Tiersma. A note on Hamming spheres , 1985, Discret. Math..
[40] Oriol Serra,et al. A local-global principle for vertex-isoperimetric problems , 2002, Discret. Math..
[41] Attila Sali,et al. Some intersection theorems , 1992, Comb..
[42] Zoltán Füredi,et al. Shadows of colored complexes. , 1988 .
[43] Kenneth Steiglitz,et al. Optimal Binary Coding of Ordered Numbers , 1965 .
[44] Алексей Дмитриевич Коршунов,et al. Монотонные булевы функции@@@Monotone Boolean functions , 2003 .
[45] G. F. Clements. The Minimal Number of Basic Elements in a Multiset Antichain , 1978, J. Comb. Theory, Ser. A.
[46] Anders Björner,et al. The Mathematical Work of Bernt Lindström , 1993, Eur. J. Comb..
[47] G. F. Clements. More on the generalized macaulay theorem - II , 1977, Discret. Math..
[48] Sajal K. Das,et al. An Edge-Isoperimetric Problem for Powers of the Petersen Graph , 2000 .
[49] Oliver Riordan. An Ordering on the Even Discrete Torus , 1998, SIAM J. Discret. Math..
[50] Béla Bollobás,et al. Isoperimetric Inequalities for Faces of the Cube and the Grid , 1990, Eur. J. Comb..
[51] Michael Mörs,et al. A generalization of a theorem of Kruskal , 1985, Graphs Comb..
[52] G. Clements. On Representing Faces of a Cube by Subfaces , 1997 .
[53] Hans-Dietrich O. F. Gronau,et al. On maximal antichains containing no set and its complement , 1981, Discret. Math..
[54] Zoltán Füredi,et al. A short proof for a theorem of Harper about Hamming-spheres , 1981, Discret. Math..
[55] Uwe Leck. A property of colored complexes and their duals , 2000, Discret. Math..
[56] Isoperimetric theorems in the binary sequences of finite lengths , 1998 .
[57] Rudolf Ahlswede,et al. General Edge-isoperimetric Inequalities, Part I: Information-theoretical Methods , 1997, Eur. J. Comb..
[58] Victor K.-W. Wei,et al. Odd and even hamming spheres also have minimum boundary , 1984, Discret. Math..
[59] G. Clements. The normalized matching property from the generalized Macaulay theorem , 1995 .
[60] Basudeb Datta,et al. A Discrete Isoperimetric Problem , 1997 .
[61] David E. Daykin,et al. Ordered Ranked Posets, Representations of Integers and Inequalities from Extremal Poset Problems , 1985 .
[62] Daniel J. Kleitman,et al. Minimally Distant Sets of Lattice Points , 1993, Eur. J. Comb..
[63] Aart Blokhuis,et al. A Kruskal-Katona Type Theorem for the Linear Lattice , 1999, Eur. J. Comb..
[64] A. A. SAPOZHENKO. On the number of antichains in multilevelled ranked posets , 1991 .
[65] A. Sali. Extremal Theorems for Matrices , 2009 .
[66] Sergei L. Bezrukov. On Posets whose Products are Macaulay , 1998, J. Comb. Theory, Ser. A.
[67] Uwe Leck. Optimal shadows and ideals in submatrix orders , 2001, Discret. Math..
[68] Oriol Serra,et al. A Local-Global Principle for Macaulay Posets , 1999, Order.
[69] Victor K.-W. Wei,et al. Addendum to "odd and even hamming spheres also have minimum boundary" , 1986, Discret. Math..
[70] A. Björner,et al. Face Numbers of Complexes and Polytopes , 2010 .
[71] G. Kalai,et al. On f‐Vectors and Homology a , 1989 .
[72] S. Bezrukov. Edge Isoperimetric Problems on Graphs , 2007 .
[73] J. Herzog,et al. Upper bounds for the number of facets of a simplicial complex , 1997 .
[74] Daniel J. Kleitman. On subsets contained in a family of non-commensurable subsets of a finite set , 1966 .
[75] G. F. Clements,et al. Characterizing Profiles ofk-Families in Additive Macaulay Posets , 1997, J. Comb. Theory, Ser. A.
[76] G. Ziegler. Lectures on Polytopes , 1994 .