Macaulay Posets

Macaulay posets are posets for which there is an analogue of the classical KruskalKatona theorem for finite sets. These posets are of great importance in many branches of combinatorics and have numerous applications. We survey mostly new and also some old results on Macaulay posets, where the intention is to present them as pieces of a general theory. In particular, the classical examples of Macaulay posets are included as well as new ones. Emphasis is also put on the construction of Macaulay posets, and their relations to other discrete optimization problems.

[1]  Bernt Lindström,et al.  The optimal number of faces in cubical complexes , 1971 .

[2]  S. Bezrukov Isoperimetric Problems in Discrete Spaces , 2002 .

[3]  Sergei L. Bezrukov Minimization of Surrounding of Subsets in Hamming Space , 2002 .

[4]  R Udolf,et al.  General Edge-isoperimetric Inequalities , Part II : a Local – Global Principle for Lexicographical Solutions , .

[5]  Attila Sali Constructions of ranked posets , 1988, Discret. Math..

[6]  Robert Elsässer,et al.  The Spider Poset Is Macaulay , 2000, J. Comb. Theory, Ser. A.

[7]  Konrad Engel,et al.  Sperner theory in partially ordered sets , 1985 .

[8]  D. E. Daykin,et al.  Ordering Integer Vectors for Coordinate Deletions , 1997 .

[9]  Uwe Leck Nonexistence of a Kruskal-Katona Type Theorem for Subword Orders , 2004, Comb..

[10]  Béla Bollobás,et al.  Exact Face-isoperimetric Inequalities , 1990, Eur. J. Comb..

[11]  Andrew Frohmader,et al.  A Kruskal-Katona type theorem for graphs , 2007, J. Comb. Theory, Ser. A.

[12]  N. Alon Independent sets in regular graphs and sum-free subsets of finite groups , 1991 .

[13]  D. E. Daykin An Isoperimetric Problem on a Lattice , 1973 .

[14]  Eran London A new proof of the colored Kruskal - Katona theorem , 1994, Discret. Math..

[15]  On the shadow of squashed families of k-sets , 1995, Electron. J. Comb..

[16]  K. Engel Sperner Theory , 1996 .

[17]  B. Lindström,et al.  A Generalization of a Combinatorial Theorem of Macaulay , 1969 .

[18]  G. Katona A theorem of finite sets , 2009 .

[19]  R. Stanley Combinatorics and commutative algebra , 1983 .

[20]  G. Clements Additive Macaulay Posets , 1997 .

[21]  Sergei L. Bezrukov On an equivalence in discrete extremal problems , 1999, Discret. Math..

[22]  Peter Frankl,et al.  A new short proof for the Kruskal-Katona theorem , 1984, Discret. Math..

[23]  L. H. Harper Optimal numberings and isoperimetric problems on graphs , 1966 .

[24]  Rudolf Ahlswede,et al.  Contributions to the geometry of hamming spaces , 1977, Discret. Math..

[25]  G. F. Clements,et al.  The cubical poset is additive , 1997, Discret. Math..

[26]  Rudolf Ahlswede,et al.  Shadows and isoperimetry under the sequence-subsequence relation , 1997, Comb..

[27]  Charles J. Colbourn,et al.  The Combinatorics of Network Reliability , 1987 .

[28]  Charles J. Colbourn,et al.  Lower bounds on two-terminal network reliability , 1988, Discret. Appl. Math..

[29]  Sergei L. Bezrukov ON THE CONSTRUCTION OF SOLUTIONS OF A DISCRETE ISOPERIMETRIC PROBLEM IN HAMMING SPACE , 1989 .

[30]  R. Labahn Maximizing antichains in the cube with fixed size of a shadow , 1992 .

[31]  F. S. Macaulay Some Properties of Enumeration in the Theory of Modular Systems , 1927 .

[32]  A. A. SAPOZHENKO The number of antichains in ranked posets , 1991 .

[33]  Uwe Leck Another Generalization of Lindström's Theorem on Subcubes of a Cube , 2002, J. Comb. Theory, Ser. A.

[34]  Peter Frankl A lower bound on the size of a complex generated by an antichain , 1989, Discret. Math..

[35]  Extremal Ideals of the Lattice of Multisets , 2002 .

[36]  David E. Daykin,et al.  A Simple Proof of the Kruskal-Katona Theorem , 1974, J. Comb. Theory, Ser. A.

[37]  Robert Elsässer,et al.  Edge-Isoperimetric Problems for Cartesian Powers of Regular Graphs , 2001, WG.

[38]  Zoltán Füredi,et al.  Families of finite sets with minimum shadows , 1986, Comb..

[39]  H. J. Tiersma A note on Hamming spheres , 1985, Discret. Math..

[40]  Oriol Serra,et al.  A local-global principle for vertex-isoperimetric problems , 2002, Discret. Math..

[41]  Attila Sali,et al.  Some intersection theorems , 1992, Comb..

[42]  Zoltán Füredi,et al.  Shadows of colored complexes. , 1988 .

[43]  Kenneth Steiglitz,et al.  Optimal Binary Coding of Ordered Numbers , 1965 .

[44]  Алексей Дмитриевич Коршунов,et al.  Монотонные булевы функции@@@Monotone Boolean functions , 2003 .

[45]  G. F. Clements The Minimal Number of Basic Elements in a Multiset Antichain , 1978, J. Comb. Theory, Ser. A.

[46]  Anders Björner,et al.  The Mathematical Work of Bernt Lindström , 1993, Eur. J. Comb..

[47]  G. F. Clements More on the generalized macaulay theorem - II , 1977, Discret. Math..

[48]  Sajal K. Das,et al.  An Edge-Isoperimetric Problem for Powers of the Petersen Graph , 2000 .

[49]  Oliver Riordan An Ordering on the Even Discrete Torus , 1998, SIAM J. Discret. Math..

[50]  Béla Bollobás,et al.  Isoperimetric Inequalities for Faces of the Cube and the Grid , 1990, Eur. J. Comb..

[51]  Michael Mörs,et al.  A generalization of a theorem of Kruskal , 1985, Graphs Comb..

[52]  G. Clements On Representing Faces of a Cube by Subfaces , 1997 .

[53]  Hans-Dietrich O. F. Gronau,et al.  On maximal antichains containing no set and its complement , 1981, Discret. Math..

[54]  Zoltán Füredi,et al.  A short proof for a theorem of Harper about Hamming-spheres , 1981, Discret. Math..

[55]  Uwe Leck A property of colored complexes and their duals , 2000, Discret. Math..

[56]  Isoperimetric theorems in the binary sequences of finite lengths , 1998 .

[57]  Rudolf Ahlswede,et al.  General Edge-isoperimetric Inequalities, Part I: Information-theoretical Methods , 1997, Eur. J. Comb..

[58]  Victor K.-W. Wei,et al.  Odd and even hamming spheres also have minimum boundary , 1984, Discret. Math..

[59]  G. Clements The normalized matching property from the generalized Macaulay theorem , 1995 .

[60]  Basudeb Datta,et al.  A Discrete Isoperimetric Problem , 1997 .

[61]  David E. Daykin,et al.  Ordered Ranked Posets, Representations of Integers and Inequalities from Extremal Poset Problems , 1985 .

[62]  Daniel J. Kleitman,et al.  Minimally Distant Sets of Lattice Points , 1993, Eur. J. Comb..

[63]  Aart Blokhuis,et al.  A Kruskal-Katona Type Theorem for the Linear Lattice , 1999, Eur. J. Comb..

[64]  A. A. SAPOZHENKO On the number of antichains in multilevelled ranked posets , 1991 .

[65]  A. Sali Extremal Theorems for Matrices , 2009 .

[66]  Sergei L. Bezrukov On Posets whose Products are Macaulay , 1998, J. Comb. Theory, Ser. A.

[67]  Uwe Leck Optimal shadows and ideals in submatrix orders , 2001, Discret. Math..

[68]  Oriol Serra,et al.  A Local-Global Principle for Macaulay Posets , 1999, Order.

[69]  Victor K.-W. Wei,et al.  Addendum to "odd and even hamming spheres also have minimum boundary" , 1986, Discret. Math..

[70]  A. Björner,et al.  Face Numbers of Complexes and Polytopes , 2010 .

[71]  G. Kalai,et al.  On f‐Vectors and Homology a , 1989 .

[72]  S. Bezrukov Edge Isoperimetric Problems on Graphs , 2007 .

[73]  J. Herzog,et al.  Upper bounds for the number of facets of a simplicial complex , 1997 .

[74]  Daniel J. Kleitman On subsets contained in a family of non-commensurable subsets of a finite set , 1966 .

[75]  G. F. Clements,et al.  Characterizing Profiles ofk-Families in Additive Macaulay Posets , 1997, J. Comb. Theory, Ser. A.

[76]  G. Ziegler Lectures on Polytopes , 1994 .