Pairwise Likelihood Inference for Nested Hidden Markov Chain Models for Multilevel Longitudinal Data
暂无分享,去创建一个
[1] Bengt Muthén,et al. Multilevel regression mixture analysis , 2009 .
[2] Florian Heiss. Sequential numerical integration in nonlinear state space models for microeconometric panel data , 2008 .
[3] C. Varin,et al. A mixed autoregressive probit model for ordinal longitudinal data. , 2010, Biostatistics.
[4] Jan Bulla,et al. Computational issues in parameter estimation for stationary hidden Markov models , 2008, Comput. Stat..
[5] C. Varin,et al. A note on composite likelihood inference and model selection , 2005 .
[6] N. Reid,et al. AN OVERVIEW OF COMPOSITE LIKELIHOOD METHODS , 2011 .
[7] Xin Gao,et al. Composite Likelihood EM Algorithm with Applications to Multivariate Hidden Markov Model , 2009 .
[8] Francesco Bartolucci,et al. Longitudinal analysis of self‐reported health status by mixture latent auto‐regressive models , 2014 .
[9] P. Diggle. Analysis of Longitudinal Data , 1995 .
[10] Francesco Bartolucci,et al. Assessment of School Performance Through a Multilevel Latent Markov Rasch Model , 2009, 0909.4961.
[11] Jeroen K. Vermunt,et al. 7. Multilevel Latent Class Models , 2003 .
[12] Geert Molenberghs,et al. A pairwise likelihood approach to estimation in multilevel probit models , 2004, Comput. Stat. Data Anal..
[13] Antonello Maruotti,et al. Multilevel multivariate modelling of legislative count data, with a hidden Markov chain , 2015 .
[14] B. Muthén,et al. Multilevel Mixture Models , 2006 .
[15] B. Lindsay. Conditional score functions: Some optimality results , 1982 .
[16] Francesco Bartolucci,et al. An extended class of marginal link functions for modelling contingency tables by equality and inequality constraints , 2007 .
[17] Harvey Goldstein,et al. Multilevel Statistical Models: Goldstein/Multilevel Statistical Models , 2010 .
[18] John J. Hanfelt,et al. Composite conditional likelihood for sparse clustered data , 2004 .
[19] Cheng Hsiao,et al. Analysis of Panel Data , 1987 .
[20] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[21] Nils Lid Hjort,et al. ML, PL, QL in Markov Chain Models , 2008 .
[22] Harry Joe,et al. Composite Likelihood Methods , 2012 .
[23] Sophia Rabe-Hesketh,et al. Handling initial conditions and endogenous covariates in dynamic/transition models for binary data with unobserved heterogeneity , 2014 .
[24] J. H. Schuenemeyer,et al. Generalized Linear Models (2nd ed.) , 1992 .
[25] David J. Nott,et al. A pairwise likelihood approach to analyzing correlated binary data , 2000 .
[26] P. Song,et al. Composite Likelihood Bayesian Information Criteria for Model Selection in High-Dimensional Data , 2010 .
[27] L. R. Rabiner,et al. An introduction to the application of the theory of probabilistic functions of a Markov process to automatic speech recognition , 1983, The Bell System Technical Journal.
[28] Edward W. Frees,et al. Longitudinal and Panel Data , 2004 .
[29] T. Rothenberg. Identification in Parametric Models , 1971 .
[30] D. Cox,et al. A note on pseudolikelihood constructed from marginal densities , 2004 .
[31] Mordecai Avriel,et al. Nonlinear programming , 1976 .
[32] J. Vermunt,et al. Latent Gold 4.0 User's Guide , 2005 .
[33] F. Bartolucci. Likelihood inference for a class of latent Markov models under linear hypotheses on the transition probabilities , 2006 .
[34] Christina M. Mastrangelo,et al. Multilevel Statistical Models, 4th edition , 2011 .
[35] A. Maruotti. Mixed Hidden Markov Models for Longitudinal Data: An Overview , 2011 .
[36] H. Akaike. INFORMATION THEORY AS AN EXTENSION OF THE MAXIMUM LIKELIHOOD , 1973 .
[37] F. V. D. Pol,et al. MIXED MARKOV LATENT CLASS MODELS , 1990 .
[38] H. Akaike,et al. Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .
[39] R. McHugh. Efficient estimation and local identification in latent class analysis , 1956 .
[40] Scott L. Thomas,et al. Multilevel Mixture Models , 2015 .
[41] C. Varin. On composite marginal likelihoods , 2008 .
[42] W. Zucchini,et al. Hidden Markov Models for Time Series: An Introduction Using R , 2009 .
[43] Francesco Bartolucci,et al. Latent Markov model for longitudinal binary data: An application to the performance evaluation of nursing homes , 2009, 0908.2300.
[44] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[45] Robert Sabourin,et al. On the memory complexity of the forward-backward algorithm , 2010, Pattern Recognit. Lett..
[46] Geert Verbeke,et al. MEANINGFUL STATISTICAL MODEL FORMULATIONS FOR REPEATED MEASURES , 2004 .
[47] G. Molenberghs,et al. Longitudinal data analysis , 2008 .
[48] L. Baum,et al. A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains , 1970 .
[49] Francesco Bartolucci,et al. Latent Markov Models for Longitudinal Data , 2012 .
[50] Biing-Hwang Juang,et al. Hidden Markov Models for Speech Recognition , 1991 .
[51] A. Farcomeni,et al. A Multivariate Extension of the Dynamic Logit Model for Longitudinal Data Based on a Latent Markov Heterogeneity Structure , 2009 .
[52] J. Besag. Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .
[53] P. McCullagh,et al. Generalized Linear Models , 1984 .
[54] Andrew J. Viterbi,et al. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm , 1967, IEEE Trans. Inf. Theory.