Temporal Query Answering in EL

Motivation Context-aware systems use data collected at runtime to recognize predefined situations and trigger adaptations; e.g., an operating system may use sensors to recognize that a video application is out of user focus, and then adapt application parameters to optimize the energy consumption. Using ontologybased data access [12, 19], the situations can be encoded into queries that are answered over an ABox containing the sensor data. In the TBox, we can encode background knowledge about the domain. For example, if the user has been working with another application on a second screen for a longer period, then we may assume that he does not need the video to be displayed in the highest resolution. In this paper, we focus on the lightweight DL EL. We can state static knowledge about applications (VideoApplication(app1)), dynamic knowledge about the current context (NotWatchingVideo(user1)), as well as background knowledge like

[1]  Harry R. Lewis,et al.  Complexity of solvable cases of the decision problem for the predicate calculus , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[2]  Riccardo Rosati,et al.  On Conjunctive Query Answering in EL , 2007, Description Logics.

[3]  Carsten Lutz,et al.  Temporal Description Logics: A Survey , 2008, 2008 15th International Symposium on Temporal Representation and Reasoning.

[4]  Ashok K. Chandra,et al.  Optimal implementation of conjunctive queries in relational data bases , 1977, STOC '77.

[5]  Amir Pnueli,et al.  The Glory of the Past , 1985, Logic of Programs.

[6]  Stefan Borgwardt,et al.  Temporalizing rewritable query languages over knowledge bases , 2015, J. Web Semant..

[7]  Fred Kröger,et al.  Temporal Logic of Programs , 1987, EATCS Monographs on Theoretical Computer Science.

[8]  Euiho Suh,et al.  Context-aware systems: A literature review and classification , 2009, Expert Syst. Appl..

[9]  Carsten Lutz,et al.  Conjunctive Query Answering in the Description Logic EL Using a Relational Database System , 2009, IJCAI.

[10]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[11]  Stefan Borgwardt,et al.  Temporal Query Answering in the Description Logic EL , 2015, IJCAI.

[12]  Dieter Fensel,et al.  Ontobroker: Ontology Based Access to Distributed and Semi-Structured Information , 1999, DS-8.

[13]  Stefan Borgwardt,et al.  LTL over EL Axioms , 2015 .

[14]  Diego Calvanese,et al.  The Description Logic Handbook: Theory, Implementation, and Applications , 2003, Description Logic Handbook.

[15]  Walter J. Savitch,et al.  Relationships Between Nondeterministic and Deterministic Tape Complexities , 1970, J. Comput. Syst. Sci..

[16]  A. Wilkie THE CLASSICAL DECISION PROBLEM (Perspectives in Mathematical Logic) By Egon Börger, Erich Grädel and Yuri Gurevich: 482 pp., DM.158.–, ISBN 3 540 57073 X (Springer, 1997). , 1998 .

[17]  Franz Baader,et al.  Temporal query entailment in the Description Logic SHQ , 2015, J. Web Semant..

[18]  Jean Christoph Jung,et al.  Lightweight Description Logics and Branching Time: A Troublesome Marriage , 2014, KR.

[19]  Frank Wolter,et al.  Temporal OBDA with LTL and DL-Lite , 2014, Description Logics.

[20]  Boris Motik,et al.  The Complexity of Answering Conjunctive and Navigational Queries over OWL 2 EL Knowledge Bases , 2014, J. Artif. Intell. Res..

[21]  A. Prasad Sistla,et al.  The complexity of propositional linear temporal logics , 1982, STOC '82.

[22]  Diego Calvanese,et al.  Data Complexity of Query Answering in Description Logics , 2006, Description Logics.

[23]  Franz Baader,et al.  Pushing the EL Envelope , 2005, IJCAI.

[24]  Franz Baader,et al.  Pushing the EL Envelope Further , 2008, OWLED.

[25]  Sebastian Rudolph,et al.  Query Answering in the Horn Fragments of the Description Logics SHOIQ and SROIQ , 2011, IJCAI.

[26]  Carsten Lutz,et al.  Temporalising Tractable Description Logics , 2007, 14th International Symposium on Temporal Representation and Reasoning (TIME'07).

[27]  Serge Abiteboul,et al.  Foundations of Databases , 1994 .

[28]  Yuri Gurevich,et al.  The Classical Decision Problem , 1997, Perspectives in Mathematical Logic.

[29]  Pierre Wolper,et al.  Reasoning about infinite computation paths , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[30]  Peter Baumgartner,et al.  A Novel Architecture for Situation Awareness Systems , 2009, TABLEAUX.

[31]  Franz Baader,et al.  LTL over description logic axioms , 2008, TOCL.

[32]  Diego Calvanese,et al.  Linking Data to Ontologies , 2008, J. Data Semant..

[33]  Franz Baader,et al.  Temporalizing Ontology-Based Data Access , 2013, CADE.

[34]  Carsten Lutz,et al.  Data Complexity in the EL Family of Description Logics , 2007, LPAR.

[35]  Markus Krötzsch,et al.  Practical Reasoning with Nominals in the EL Family of Description Logics , 2012, KR.

[36]  Franz Baader,et al.  Unification in the Description Logic EL , 2009, RTA.

[37]  Sebastian Rudolph,et al.  Conjunctive Queries for a Tractable Fragment of OWL 1.1 , 2007, ISWC/ASWC.

[38]  Marcel Lippmann,et al.  Temporalised description logics for monitoring partially observable events , 2014, Joint Workshop of the German Research Training Groups in Computer Science.

[39]  Sebastian Rudolph,et al.  Nominals, Inverses, Counting, and Conjunctive Queries or: Why Infinity is your Friend! , 2010, J. Artif. Intell. Res..

[40]  Alessandro Artale,et al.  A Cookbook for Temporal Conceptual Data Modelling with Description Logics , 2012, TOCL.

[41]  Davide Bresolin,et al.  DL-Lite and Interval Temporal Logics: a Marriage Proposal , 2014, ECAI.