Density matrix purification with rigorous error control.

Density matrix purification, although being a powerful tool for linear scaling construction of the density matrix in electronic structure calculations, has been limited by uncontrolled error accumulation. In this article, a strategy for the removal of small matrix elements in density matrix purification is proposed with which the forward error can be rigorously controlled. The total forward error is separated into two parts, the error in eigenvalues and the error in the occupied invariant subspace. We use the concept of canonical angles to measure and control differences between exact and approximate occupied subspaces. We also analyze the conditioning of the density matrix construction problem and propose a method for calculation of interior eigenvalues to be used together with density matrix purification.

[1]  Lin-wang Wang,et al.  Solving Schrödinger’s equation around a desired energy: Application to silicon quantum dots , 1994 .

[2]  Martinelli,et al.  Lanczos-type algorithm for excited states of very-large-scale quantum systems. , 1995, Physical review. B, Condensed matter.

[3]  David E. Manolopoulos,et al.  Canonical purification of the density matrix in electronic-structure theory , 1998 .

[4]  William W. Hager,et al.  Multilevel domain decomposition for electronic structure calculations , 2007, J. Comput. Phys..

[5]  M. Teter,et al.  Tight-binding electronic-structure calculations and tight-binding molecular dynamics with localized orbitals. , 1994, Physical review. B, Condensed matter.

[6]  Vanderbilt,et al.  Generalization of the density-matrix method to a nonorthogonal basis. , 1994, Physical review. B, Condensed matter.

[7]  Yihan Shao,et al.  Curvy steps for density matrix-based energy minimization: Application to large-scale self-consistent-field calculations , 2003 .

[8]  Paweł Sałek,et al.  Linear-scaling implementation of molecular electronic self-consistent field theory. , 2007, The Journal of chemical physics.

[9]  Gustavo E. Scuseria,et al.  What is the Best Alternative to Diagonalization of the Hamiltonian in Large Scale Semiempirical Calculations , 1999 .

[10]  K Wu,et al.  Thick-Restart Lanczos Method for Electronic Structure Calculations , 1999 .

[11]  Emanuel H. Rubensson,et al.  Systematic sparse matrix error control for linear scaling electronic structure calculations , 2005, J. Comput. Chem..

[12]  Christian Ochsenfeld,et al.  Multipole-based integral estimates for the rigorous description of distance dependence in two-electron integrals. , 2005, The Journal of chemical physics.

[13]  Emanuel H. Rubensson,et al.  A hierarchic sparse matrix data structure for large‐scale Hartree‐Fock/Kohn‐Sham calculations , 2007, J. Comput. Chem..

[14]  Valéry Weber,et al.  Linear scaling density matrix perturbation theory for basis-set-dependent quantum response calculations: an orthogonal formulation. , 2007, The Journal of chemical physics.

[15]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[16]  Benny G. Johnson,et al.  Linear scaling density functional calculations via the continuous fast multipole method , 1996 .

[17]  Gustavo E. Scuseria,et al.  Comparison of Conjugate Gradient Density Matrix Search and Chebyshev Expansion Methods for Avoiding Diagonalization in Large-Scale Electronic Structure Calculations , 1998 .

[18]  S. Goedecker Linear scaling electronic structure methods , 1999 .

[19]  A. Holas Transforms for idempotency purification of density matrices in linear-scaling electronic-structure calculations , 2001 .

[20]  Qingshi Zhu,et al.  Spin-unrestricted linear-scaling electronic structure theory and its application to magnetic carbon-doped boron nitride nanotubes. , 2005, The Journal of chemical physics.

[21]  Nonorthogonal density-matrix perturbation theory. , 2005, The Journal of chemical physics.

[22]  Marek Sierka,et al.  Fast evaluation of the Coulomb potential for electron densities using multipole accelerated resolution of identity approximation , 2003 .

[23]  Uwe Stephan,et al.  Order-N projection method for first-principles computations of electronic quantities and Wannier functions , 1998 .

[24]  M. Head‐Gordon,et al.  A multipole acceptability criterion for electronic structure theory , 1998 .

[25]  M. Challacombe A general parallel sparse-blocked matrix multiply for linear scaling SCF theory , 2000 .

[26]  Michele Benzi,et al.  A Sparse Approximate Inverse Preconditioner for the Conjugate Gradient Method , 1996, SIAM J. Sci. Comput..

[27]  Eric Schwegler,et al.  Linear scaling computation of the Fock matrix. IV. Multipole accelerated formation of the exchange matrix , 1999 .

[28]  Colombo,et al.  Efficient linear scaling algorithm for tight-binding molecular dynamics. , 1994, Physical review letters.

[29]  R. Lindh,et al.  Low-cost evaluation of the exchange Fock matrix from Cholesky and density fitting representations of the electron repulsion integrals. , 2007, The Journal of chemical physics.

[30]  Christian Ochsenfeld,et al.  Linear and sublinear scaling formation of Hartree-Fock-type exchange matrices , 1998 .

[31]  Li,et al.  Density-matrix electronic-structure method with linear system-size scaling. , 1993, Physical review. B, Condensed matter.

[32]  Eric Schwegler,et al.  Linear scaling computation of the Fock matrix. II. Rigorous bounds on exchange integrals and incremental Fock build , 1997 .

[33]  Gustavo E. Scuseria,et al.  Linear scaling conjugate gradient density matrix search as an alternative to diagonalization for first principles electronic structure calculations , 1997 .

[34]  Martin J. Mohlenkamp,et al.  Fast Spectral Projection Algorithms for Density-Matrix Computations , 1999 .

[35]  J. Olsen,et al.  Linear-scaling symmetric square-root decomposition of the overlap matrix. , 2007, The Journal of chemical physics.

[36]  David R. Bowler,et al.  Density matrices in O(N) electronic structure calculations: theory and applications , 1998 .

[37]  Gustavo E. Scuseria,et al.  Semiempirical methods with conjugate gradient density matrix search to replace diagonalization for molecular systems containing thousands of atoms , 1997 .

[38]  David R. Bowler,et al.  Recent progress in linear scaling ab initio electronic structure techniques , 2002 .

[39]  Martin Head-Gordon,et al.  Chebyshev expansion methods for electronic structure calculations on large molecular systems , 1997 .

[40]  Károly Németh,et al.  Linear scaling density matrix search based on sign matrices , 2000 .

[41]  G. Scuseria,et al.  Range definitions for Gaussian-type charge distributions in fast multipole methods , 1999 .

[42]  Benny G. Johnson,et al.  THE CONTINUOUS FAST MULTIPOLE METHOD , 1994 .

[43]  Trygve Helgaker,et al.  Direct optimization of the atomic-orbital density matrix using the conjugate-gradient method with a multilevel preconditioner , 2001 .

[44]  Anders M. N. Niklasson,et al.  Trace resetting density matrix purification in O(N) self-consistent-field theory , 2003 .

[45]  Eric Schwegler,et al.  Fast assembly of the Coulomb matrix: A quantum chemical tree code , 1996 .

[46]  Matt Challacombe,et al.  Linear scaling computation of the Fock matrix. VI. Data parallel computation of the exchange-correlation matrix , 2003 .

[47]  Itai Panas,et al.  A fragment multipole approach to long-range Coulomb interactions in Hartree-Fock calculations on large systems , 1992 .

[48]  Matt Challacombe,et al.  Linear scaling computation of the Fock matrix. VII. Parallel computation of the Coulomb matrix. , 2004, The Journal of chemical physics.

[49]  R. Mcweeny,et al.  The density matrix in self-consistent field theory I. Iterative construction of the density matrix , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[50]  C. Bris,et al.  Can we outperform the DIIS approach for electronic structure calculations , 2000 .

[51]  Michael J. Frisch,et al.  Achieving linear scaling in exchange-correlation density functional quadratures , 1996 .

[52]  Qingshi Zhu,et al.  Linear scaling calculation of band edge states and doped semiconductors. , 2007, The Journal of chemical physics.

[53]  Christian Ochsenfeld,et al.  Linear scaling exchange gradients for Hartree–Fock and hybrid density functional theory , 2000 .

[54]  Itai Panas,et al.  ABINITIO METHODS FOR LARGE SYSTEMS , 1991 .

[55]  Chakram S. Jayanthi,et al.  Order-/N methodologies and their applications , 2002 .

[56]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[57]  Anders M. N. Niklasson,et al.  Multiresolution density-matrix approach to electronic structure calculations , 2002 .

[58]  David A Mazziotti,et al.  Comparison of two genres for linear scaling in density functional theory: purification and density matrix minimization methods. , 2005, The Journal of chemical physics.

[59]  Matt Challacombe,et al.  A simplified density matrix minimization for linear scaling self-consistent field theory , 1999 .

[60]  David R. Bowler,et al.  Parallel sparse matrix multiplication for linear scaling electronic structure calculations , 2001 .

[61]  V. R. Saunders,et al.  A “Level–Shifting” method for converging closed shell Hartree–Fock wave functions , 1973 .

[62]  Emanuel H. Rubensson,et al.  Determination of the chemical potential and HOMO/LUMO orbitals in density purification methods , 2006 .

[63]  G. Scuseria,et al.  Purification of the first-order density matrix using steepest descent and Newton-Raphson methods , 2002 .

[64]  Eric Schwegler,et al.  Linear scaling computation of the Hartree–Fock exchange matrix , 1996 .

[65]  Daw Model for energetics of solids based on the density matrix. , 1993, Physical review. B, Condensed matter.

[66]  Yihan Shao,et al.  Improved Fermi operator expansion methods for fast electronic structure calculations , 2003 .

[67]  Paweł Sałek,et al.  The trust-region self-consistent field method in Kohn-Sham density-functional theory. , 2005, The Journal of chemical physics.

[68]  Michael J. Frisch,et al.  A linear scaling method for Hartree–Fock exchange calculations of large molecules , 1996 .

[69]  Paweł Sałek,et al.  Efficient implementation of the fast multipole method. , 2006, The Journal of chemical physics.

[70]  Mark S. Gordon,et al.  New parallel optimal‐parameter fast multipole method (OPFMM) , 2001, J. Comput. Chem..

[71]  A. Niklasson Iterative refinement method for the approximate factorization of a matrix inverse , 2004 .

[72]  Kress,et al.  Linear-scaling tight binding from a truncated-moment approach. , 1996, Physical review. B, Condensed matter.

[73]  Anders M.N. Niklasson Expansion algorithm for the density matrix , 2002 .

[74]  David A Mazziotti Towards idempotent reduced density matrices via particle-hole duality: McWeeny's purification and beyond. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[75]  Idempotency-conserving iteration scheme for the one-electron density matrix. , 2005, Physical review letters.

[76]  W. Kahan,et al.  The Rotation of Eigenvectors by a Perturbation. III , 1970 .

[77]  Paweł Sałek,et al.  The trust-region self-consistent field method: towards a black-box optimization in Hartree-Fock and Kohn-Sham theories. , 2004, The Journal of chemical physics.

[78]  Anders M.N. Niklasson Implicit purification for temperature-dependent density matrices , 2003 .

[79]  D. Mazziotti Linear scaling and the 1,2-contracted Schrödinger equation , 2001 .

[80]  Yihan Shao,et al.  Sparse matrix multiplications for linear scaling electronic structure calculations in an atom‐centered basis set using multiatom blocks , 2003, J. Comput. Chem..

[81]  Paweł Sałek,et al.  Linear-scaling formation of Kohn-Sham Hamiltonian: application to the calculation of excitation energies and polarizabilities of large molecular systems. , 2004, The Journal of chemical physics.

[82]  Christian Ochsenfeld,et al.  A reformulation of the coupled perturbed self-consistent field equations entirely within a local atomic orbital density matrix-based scheme , 1997 .

[83]  G. Scuseria,et al.  Converging difficult SCF cases with conjugate gradient density matrix search , 2000 .

[84]  Eric Schwegler,et al.  Linear scaling computation of the Fock matrix , 1997 .