Potential Design for Electron Transmission in Semiconductor Devices

In this brief, we discuss the design of electrostatic potential profile to achieve a desired electron transmission coefficient versus bias voltage characteristics in nanoscale semiconductor devices. This is a common problem in the design of many new electronic devices. We formulate it as a constrained optimization problem, and solve it by sequential linear programming. We further investigate the robust design of potential that is tolerant to noise, disturbance, and parameter uncertainty in the device.