golem95: A numerical program to calculate one-loop tensor integrals with up to six external legs
暂无分享,去创建一个
T. Binoth | Gudrun Heinrich | T. Reiter | J.-Ph. Guillet | E. Pilon | J. Guillet | E. Pilon | T. Binoth | G. Heinrich | T. Reiter
[1] Z. Kunszt,et al. Unitarity cuts and reduction to master integrals in d dimensions for one-loop amplitudes , 2006, hep-ph/0612277.
[2] G. Duplančić,et al. Reduction method for dimensionally regulatedone-loop N-point Feynman integrals , 2003, hep-ph/0303184.
[3] William H. Press,et al. Numerical recipes , 1990 .
[4] L. Dixon,et al. Dimensionally-regulated pentagon integrals☆ , 1993, hep-ph/9306240.
[5] A. I. Davydychev. A simple formula for reducing Feynman diagrams to scalar integrals , 1991 .
[6] D. Soper,et al. Numerical integration of one-loop Feynman diagrams for N-photon amplitudes , 2006, hep-ph/0610028.
[7] Rikkert Frederix,et al. MadDipole: automation of the dipole subtraction method in MadGraph/MadEvent , 2008, 0808.2128.
[8] G. Zanderighi,et al. Scalar one-loop integrals for QCD , 2007, 0712.1851.
[9] Z. Kunszt,et al. Full one-loop amplitudes from tree amplitudes , 2008, 0801.2237.
[10] T. Binoth,et al. Reduction formalism for dimensionally regulated one loop N point integrals , 1999, hep-ph/9911342.
[11] Ansgar Denner,et al. Feyn Calc―computer-algebraic calculation of Feynman amplitudes , 1991 .
[12] N.,et al. Automatic Computation of Cross Sections in HEP ∗ Status of GRACE System , 1999 .
[13] Giovanni Ossola,et al. Reducing full one-loop amplitudes to scalar integrals at the integrand level , 2006, hep-ph/0609007.
[14] A. Denner,et al. Electroweak corrections to charged-current e+ e- ---> 4 fermion processes: Technical details and further results , 2005, hep-ph/0505042.
[15] Costas G. Papadopoulos,et al. CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes , 2007, 0711.3596.
[16] Bo Feng,et al. Polynomial Structures in One-Loop Amplitudes , 2008, 0803.3147.
[17] T. Hahn,et al. Generating Feynman Diagrams and Amplitudes with FeynArts 3 , 2001 .
[18] J. Guillet,et al. Algebraic evaluation of rational polynomials in one-loop amplitudes , 2006, hep-ph/0609054.
[19] F. Krauss,et al. From multileg loops to trees (by-passing Feynman's Tree Theorem) , 2008, 0807.0531.
[20] R. Pittau,et al. The NLO multileg working group: summary report , 2008, 0803.0494.
[21] Michael H. Seymour,et al. TeVJet: A general framework for the calculation of jet observables in NLO QCD , 2008, 0803.2231.
[22] German Rodrigo,et al. From Loops to Trees By-passing Feynman's Theorem , 2008, 0804.3170.
[23] Bo Feng,et al. Complete One-Loop Amplitudes With Massless Propagators , 2008 .
[24] Z. Kunszt,et al. Masses, fermions and generalized D-dimensional unitarity , 2008, 0806.3467.
[25] Z. Bern,et al. Dimensionally regulated one-loop integrals , 1993 .
[26] Connection between Feynman integrals having different values of the space-time dimension. , 1996, Physical review. D, Particles and fields.
[27] T. Hahn,et al. Automatized One-Loop Calculations in 4 and D dimensions , 1998 .
[28] L. Dixon,et al. On-shell methods in perturbative QCD , 2007, 0704.2798.
[29] T. Binoth,et al. A numerical evaluation of the scalar hexagon integral in the physical region , 2003 .
[30] A. Denner,et al. Reduction schemes for one-loop tensor integrals , 2005, hep-ph/0509141.
[31] J. Vermaseren,et al. New algorithms for one-loop integrals , 1990 .
[32] Paul Roman,et al. The Analytic S-Matrix , 1967 .
[33] W. Kilgore. One-loop Integral Coefficients from Generalized Unitarity , 2007, 0711.5015.
[34] Z. Kunszt,et al. A numerical unitarity formalism for evaluating one-loop amplitudes , 2007, 0708.2398.
[35] D. Maitre,et al. An Automated Implementation of On-shell Methods for One-Loop Amplitudes , 2008, 0803.4180.
[36] T. Hahn,et al. Excursions into FeynArts and FormCalc , 2006, hep-ph/0607049.
[37] C. Schubert,et al. An algebraic/numerical formalism for one-loop multi-leg amplitudes , 2005 .
[38] J. Guillet,et al. Six-Photon Amplitudes in Scalar QED , 2007, 0711.4713.
[39] S. D. Ellis,et al. A New Monte Carlo Treatment of Multiparticle Phase Space at High-energies , 1986 .
[40] G.Zanderighi. Semi-numerical evaluation of one-loop corrections , 2005, hep-ph/0511350.
[41] Yoshimitsu Shimizu,et al. Automatic Computation of Cross Sections in HEP , 2000 .
[42] Ciaran Williams,et al. One-loop phi-MHV amplitudes using the unitarity bootstrap: the general helicity case , 2008, 0804.4149.
[43] P. Mastrolia,et al. Closed-form decomposition of one-loop massive amplitudes , 2008, 0803.1989.
[44] G. Zanderighi,et al. On the numerical evaluation of one-loop amplitudes: the gluonic case , 2008, 0805.2152.
[45] S. Moch,et al. Automating dipole subtraction , 2008, 0807.3701.
[46] T. Hahn,et al. News from FormCalc and LoopTools , 2006, hep-ph/0601248.
[47] Tanju Gleisberg,et al. Automating dipole subtraction for QCD NLO calculations , 2007, 0709.2881.
[48] R. Pittau,et al. Optimizing the Reduction of One-Loop Amplitudes , 2008, 0803.3964.