A 4.4-mA ESD-Safe 900-MHz LNA With 0.9-dB Noise Figure

A 900-MHz 1.2-V 4.36-mA low-noise amplifier (LNA) with a minimum of 0.92-dB noise figure (NF) at 868 MHz, −12-dBm IIP<sub>3</sub>, with one inductor (external) is demonstrated. The circuit achieves narrowband input matching on a wideband LNA without inductive degeneration. A new half-cascoding technique is used to improve the input matching (<inline-formula> <tex-math notation="LaTeX">$S_{11}$ </tex-math></inline-formula>) while simultaneously achieving sub-1-dB NF performance. The 0.13-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> CMOS LNA is fabricated with embedded electrostatic discharge (ESD) protection diodes that add 60- and 80-fF loads at the RF input and output ports. At 868 MHz, the packaged LNA has a measured input return loss (<inline-formula> <tex-math notation="LaTeX">$S_{11}$ </tex-math></inline-formula>) of −18 dB and the transmission gain (<inline-formula> <tex-math notation="LaTeX">$S_{21}$ </tex-math></inline-formula>) of 14.2 dB. At 900 MHz, the LNA has a measured NF of 0.98 dB. The LNA (excluding the buffer) occupies an area of 0.047 mm<sup>2</sup>. The chip passes the human body model (HBM) test with an ESD zap of 2.5 kV within 10% margin of its prezap <inline-formula> <tex-math notation="LaTeX">$I$ </tex-math></inline-formula>–<inline-formula> <tex-math notation="LaTeX">$V$ </tex-math></inline-formula> characteristics, under JEDEC standards. Multiple packaged chips were characterized with no perceptible difference in performance, indicating a robust design.

[2]  Sang-Gug Lee,et al.  A 64 µW, 23 dB gain, 8 dB NF, 2.4 GHz RF front-end for ultra-low power Internet-of-Things transceivers , 2017, 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[3]  Robert W. Dutton,et al.  A noise optimization technique for integrated low-noise amplifiers , 2002, IEEE J. Solid State Circuits.

[4]  Kihyun Kim,et al.  A Design of a High-Speed and High-Efficiency Capsule Endoscopy System , 2012, IEEE Transactions on Biomedical Engineering.

[5]  Thomas H. Lee,et al.  The Design of CMOS Radio-Frequency Integrated Circuits: RF CIRCUITS THROUGH THE AGES , 2003 .

[6]  Roberto Sorrentino,et al.  Modeling and characterization of the bonding-wire interconnection , 2001 .

[7]  R. Staszewski,et al.  A 0.02–4.5-GHz LN(T)A in 28-nm CMOS for 5G Exploiting Noise Reduction and Current Reuse , 2020, IEEE Journal of Solid-State Circuits.

[8]  Kuduck Kwon,et al.  A 50-MHz–1-GHz 2.3-dB NF Noise-Cancelling Balun-LNA Employing a Modified Current-Bleeding Technique and Balanced Loads , 2019, IEEE Transactions on Circuits and Systems I: Regular Papers.

[9]  Pietro Andreani,et al.  Noise optimization of an inductively degenerated CMOS low noise amplifier , 2001 .

[10]  Edwin van der Heijden,et al.  A 1.95 GHz Sub-1 dB NF, +40 dBm OIP3 WCDMA LNA Module , 2012, IEEE Journal of Solid-State Circuits.

[11]  Thierry Taris,et al.  Design of CMOS LNA with the Inversion Coefficient , 2018, 2018 16th IEEE International New Circuits and Systems Conference (NEWCAS).

[12]  Heng Zhang,et al.  A Noise Reduction and Linearity Improvement Technique for a Differential Cascode LNA , 2008, IEEE Journal of Solid-State Circuits.

[13]  Tae Wook Kim,et al.  A 2.88 mW $+$ 9.06 dBm IIP3 Common-Gate LNA With Dual Cross-Coupled Capacitive Feedback , 2015, IEEE Transactions on Microwave Theory and Techniques.

[14]  T.H. Lee,et al.  A 1.5 V, 1.5 GHz CMOS low noise amplifier , 1996, 1996 Symposium on VLSI Circuits. Digest of Technical Papers.

[15]  Donggu Im,et al.  360-μW 4.1-dB NF CMOS MedRadio receiver RF front-end with current-reuse Q-boosted resistive feedback LNA for biomedical IoT applications , 2020, Int. J. Hum. Cap. Inf. Technol. Prof..

[16]  R. Jacob Baker,et al.  CMOS Circuit Design, Layout, and Simulation , 1997 .

[17]  Ramesh Harjani,et al.  A 2.4-GHz, Sub-1-V, 2.8-dB NF, 475- $\mu$ W Dual-Path Noise and Nonlinearity Cancelling LNA for Ultra-Low-Power Radios , 2018, IEEE Journal of Solid-State Circuits.

[18]  Meng-Ting Hsu,et al.  Low power high gain CMOS LNA based on inverter cell and self-body bias for UWB receivers , 2014, Microelectron. J..

[19]  Taejong Kim,et al.  CMOS Channel-Selection Low-Noise Amplifier With High- $Q$ RF Band-Pass/Band-Rejection Filter for Highly Integrated RF Front-Ends , 2020, IEEE Microwave and Wireless Components Letters.

[20]  Yo-Sheng Lin,et al.  High-Performance Wideband Low-Noise Amplifier Using Enhanced $\pi$-Match Input Network , 2014, IEEE Microwave and Wireless Components Letters.

[21]  Atul Thakur,et al.  A 900-MHz 1.25-dB Noise-Figure Differential-Output LNA with 12.5 dB/mW FoM , 2019, 2019 17th IEEE International New Circuits and Systems Conference (NEWCAS).

[22]  Shouri Chatterjee,et al.  Multi-Band Frequency Transformations, Matching Networks and Amplifiers , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[23]  Jack Li,et al.  Design and Performance Analysis of a 866-MHz Low-Power Optimized CMOS LNA for UHF RFID , 2013, IEEE Transactions on Industrial Electronics.