The evolution of gene collectives: How natural selection drives chemical innovation

DNA sequencing has become central to the study of evolution. Comparing the sequences of individual genes from a variety of organisms has revolutionized our understanding of how single genes evolve, but the challenge of analyzing polygenic phenotypes has complicated efforts to study how genes evolve when they are part of a group that functions collectively. We suggest that biosynthetic gene clusters from microbes are ideal candidates for the evolutionary study of gene collectives; these selfish genetic elements evolve rapidly, they usually comprise a complete pathway, and they have a phenotype—a small molecule—that is easy to identify and assay. Because these elements are transferred horizontally as well as vertically, they also provide an opportunity to study the effects of horizontal transmission on gene evolution. We discuss known examples to begin addressing two fundamental questions about the evolution of biosynthetic gene clusters: How do they propagate by horizontal transfer? How do they change to create new molecules?

[1]  Thomas Lampe,et al.  Identification and Characterization of the First Class of Potent Bacterial Acetyl-CoA Carboxylase Inhibitors with Antibacterial Activity* , 2004, Journal of Biological Chemistry.

[2]  R. Koczura,et al.  The Yersinia high-pathogenicity island and iron-uptake systems in clinical isolates of Escherichia coli. , 2003, Journal of medical microbiology.

[3]  B. Tudzynski Gibberellin biosynthesis in fungi: genes, enzymes, evolution, and impact on biotechnology , 2005, Applied Microbiology and Biotechnology.

[4]  Lei Wang,et al.  Characterization of E. coli O24 and O56 O Antigen Gene Clusters Reveals a Complex Evolutionary History of the O24 Gene Cluster , 2006, Current Microbiology.

[5]  Michelle C. Moffitt,et al.  Characterization of the Nodularin Synthetase Gene Cluster and Proposed Theory of the Evolution of Cyanobacterial Hepatotoxins , 2004, Applied and Environmental Microbiology.

[6]  I. Moriyón,et al.  Identification of 2,3-dihydroxybenzoic acid as a Brucella abortus siderophore , 1992, Infection and immunity.

[7]  C. Walsh,et al.  Assembling the glycopeptide antibiotic scaffold: The biosynthesis of from Streptomyces toyocaensis NRRL15009 , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Michael A Fischbach,et al.  A singular enzymatic megacomplex from Bacillus subtilis , 2007, Proceedings of the National Academy of Sciences.

[9]  H. Reichenbach,et al.  The leupyrrins: a structurally unique family of secondary metabolites from the myxobacterium Sorangium cellulosum. , 2003, Journal of natural products.

[10]  J R Roth,et al.  Selfish operons: horizontal transfer may drive the evolution of gene clusters. , 1996, Genetics.

[11]  P. Flatt,et al.  Biosynthesis of aminocyclitol-aminoglycoside antibiotics and related compounds. , 2007, Natural product reports.

[12]  É. Carniel The Yersinia high-pathogenicity island. , 1999, International microbiology : the official journal of the Spanish Society for Microbiology.

[13]  Jan E. Schnitzer,et al.  Role of GTP Hydrolysis in Fission of Caveolae Directly from Plasma Membranes , 1996, Science.

[14]  Emmanuel Zazopoulos,et al.  Microbial genomics as a guide to drug discovery and structural elucidation: ECO-02301, a novel antifungal agent, as an example. , 2005, Journal of natural products.

[15]  R. Müller,et al.  Nonribosomal peptide biosynthesis: point mutations and module skipping lead to chemical diversity. , 2006, Angewandte Chemie.

[16]  C. Walsh,et al.  Characterization of the aminocoumarin ligase SimL from the simocyclinone pathway and tandem incubation with NovM,P,N from the novobiocin pathway. , 2005, Biochemistry.

[17]  Christopher T. Walsh,et al.  Lessons from natural molecules , 2004, Nature.

[18]  W. Fenical,et al.  Symbiotic marine bacteria chemically defend crustacean embryos from a pathogenic fungus. , 1989, Science.

[19]  Anna Tempczyk,et al.  Crystal structures of human calcineurin and the human FKBP12–FK506–calcineurin complex , 1995, Nature.

[20]  Rolf Müller,et al.  Evolutionary implications of bacterial polyketide synthases. , 2005, Molecular biology and evolution.

[21]  H. Blöcker,et al.  Molecular and biochemical studies of chondramide formation-highly cytotoxic natural products from Chondromyces crocatus Cm c5. , 2006, Chemistry & biology.

[22]  P. Leadlay,et al.  The biosynthetic gene cluster for the polyketide immunosuppressant rapamycin. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[23]  C. Khosla,et al.  Metabolic engineering of a methylmalonyl-CoA mutase-epimerase pathway for complex polyketide biosynthesis in Escherichia coli. , 2002, Biochemistry.

[24]  M. Fischbach,et al.  A biosynthetic gene cluster for the acetyl-CoA carboxylase inhibitor andrimid. , 2006, Journal of the American Chemical Society.

[25]  R. Doolittle,et al.  A naturally occurring horizontal gene transfer from a eukaryote to a prokaryote , 1990, Journal of Molecular Evolution.

[26]  P. Jensen,et al.  Chemical Ecology of Marine Microbial Defense , 2002, Journal of Chemical Ecology.

[27]  E. de Hoffmann,et al.  Yersiniabactin Production by Pseudomonas syringae and Escherichia coli, and Description of a Second Yersiniabactin Locus Evolutionary Group , 2006, Applied and Environmental Microbiology.

[28]  T. C. Nesbitt,et al.  fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. , 2000, Science.

[29]  N. Moran,et al.  Genes Lost and Genes Found: Evolution of Bacterial Pathogenesis and Symbiosis , 2001, Science.

[30]  Hideyuki Suzuki,et al.  Plant lanosterol synthase: divergence of the sterol and triterpene biosynthetic pathways in eukaryotes. , 2006, Plant & cell physiology.

[31]  W. Doolittle,et al.  The role of lateral gene transfer in the evolution of isoprenoid biosynthesis pathways , 2000, Molecular microbiology.

[32]  P. Dorrestein,et al.  Molecular Basis for Chloronium-mediated Meroterpene Cyclization , 2007, Journal of Biological Chemistry.

[33]  Michael Müller,et al.  Mutational Analysis and Reconstituted Expression of the Biosynthetic Genes Involved in the Formation of 3-Amino-5-hydroxybenzoic Acid, the Starter Unit of Rifamycin Biosynthesis in Amycolatopsis mediterraneiS699* , 2001, The Journal of Biological Chemistry.

[34]  J. H. Crosa,et al.  Iron transport in bacteria , 2004 .

[35]  D. Herschlag,et al.  Catalytic promiscuity and the evolution of new enzymatic activities. , 1999, Chemistry & biology.

[36]  W. A. van der Donk,et al.  New developments in lantibiotic biosynthesis and mode of action. , 2005, Current opinion in microbiology.

[37]  B. M. Lange,et al.  Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[38]  C R Hutchinson,et al.  Biosynthesis of the ansamycin antibiotic rifamycin: deductions from the molecular analysis of the rif biosynthetic gene cluster of Amycolatopsis mediterranei S699. , 1998, Chemistry & biology.

[39]  J. Clardy The chemistry of signal transduction. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[40]  K. Entian,et al.  Two Different Lantibiotic-Like Peptides Originate from the Ericin Gene Cluster of Bacillus subtilis A1/3 , 2002, Journal of bacteriology.

[41]  C. R. Davis,et al.  Lovastatin biosynthesis in Aspergillus terreus: characterization of blocked mutants, enzyme activities and a multifunctional polyketide synthase gene. , 1999, Chemistry & biology.

[42]  T. Vogel,et al.  Type I Polyketide Synthases May Have Evolved Through Horizontal Gene Transfer , 2005, Journal of Molecular Evolution.

[43]  M V Olson,et al.  When less is more: gene loss as an engine of evolutionary change. , 1999, American journal of human genetics.

[44]  James R. Brown,et al.  Identification, Evolution, and Essentiality of the Mevalonate Pathway for Isopentenyl Diphosphate Biosynthesis in Gram-Positive Cocci , 2000, Journal of bacteriology.

[45]  Stuart L. Schreiber,et al.  Structure of the FKBP12-Rapamycin Complex Interacting with Binding Domain of Human FRAP , 1996, Science.

[46]  A. Trefzer,et al.  Biosynthetic Gene Cluster of Simocyclinone, a Natural Multihybrid Antibiotic , 2002, Antimicrobial Agents and Chemotherapy.

[47]  C. Khosla,et al.  Cloning and heterologous expression of the epothilone gene cluster. , 2000, Science.

[48]  F. Rutjes,et al.  2-Deoxystreptamine: central scaffold of aminoglycoside antibiotics. , 2005, Chemical reviews.

[49]  R. Dawkins Climbing Mount Improbable , 1996 .

[50]  Tilmann Weber,et al.  Comparative analysis and insights into the evolution of gene clusters for glycopeptide antibiotic biosynthesis , 2005, Molecular Genetics and Genomics.

[51]  C. Townsend,et al.  Structure of β-lactam synthetase reveals how to synthesize antibiotics instead of asparagine , 2001, Nature Structural Biology.

[52]  James A. Scott,et al.  Fungus-growing ants use antibiotic-producing bacteria to control garden parasites , 1999, Nature.

[53]  E. Carpenter,et al.  Structure of dehydroquinate synthase reveals an active site capable of multistep catalysis , 1998, Nature.

[54]  David J Newman,et al.  Natural products as sources of new drugs over the period 1981-2002. , 2003, Journal of natural products.

[55]  R. Müller,et al.  Unusual biosynthesis of leupyrrins in the myxobacterium Sorangium cellulosum. , 2004, Angewandte Chemie.

[56]  S. Payne,et al.  Cloning of a Vibrio cholerae vibriobactin gene cluster: identification of genes required for early steps in siderophore biosynthesis , 1997, Journal of bacteriology.

[57]  A. Danchin,et al.  The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens , 2003, Nature Biotechnology.

[58]  P. Hedden,et al.  Gibberellin Biosynthesis in Plants and Fungi: A Case of Convergent Evolution? , 2001, Journal of Plant Growth Regulation.

[59]  K. Nakanishi,et al.  Andrimid, a new peptide antibiotic produced by an intracellular bacterial symbiont isolated from a brown planthopper , 1987 .

[60]  T. Ellingsen,et al.  Biosynthesis of the polyene antifungal antibiotic nystatin in Streptomyces noursei ATCC 11455: analysis of the gene cluster and deduction of the biosynthetic pathway. , 2000, Chemistry & biology.

[61]  F. Azam,et al.  Antagonistic Interactions among Marine Bacteria Impede the Proliferation of Vibrio cholerae , 2005, Applied and Environmental Microbiology.

[62]  A. Pühler,et al.  The 120 592 bp IncF plasmid pRSB107 isolated from a sewage-treatment plant encodes nine different antibiotic-resistance determinants, two iron-acquisition systems and other putative virulence-associated functions. , 2005, Microbiology.

[63]  S. Long Rhizobium symbiosis: nod factors in perspective. , 1996, The Plant cell.

[64]  L. Heide,et al.  Cloning and analysis of the simocyclinone biosynthetic gene cluster of Streptomyces antibioticus Tü 6040 , 2002, Archives of Microbiology.

[65]  T. Cleveland,et al.  Molecular characterization and analysis of the operon encoding the antifungal lipopeptide bacillomycin D. , 2004, FEMS microbiology letters.

[66]  M. Marahiel,et al.  The dhb Operon of Bacillus subtilisEncodes the Biosynthetic Template for the Catecholic Siderophore 2,3-Dihydroxybenzoate-Glycine-Threonine Trimeric Ester Bacillibactin* , 2001, The Journal of Biological Chemistry.

[67]  Thomas E. Ferrin,et al.  Designed divergent evolution of enzyme function , 2006, Nature.

[68]  R. Andersen,et al.  Andrimid and moiramides A-C, metabolites produced in culture by a marine isolate of the bacterium Pseudomonas fluorescens: structure elucidation and biosynthesis , 1994 .

[69]  C. Walsh,et al.  Glycopeptide and lipoglycopeptide antibiotics. , 2005, Chemical reviews.

[70]  P. Arya,et al.  Toward high-throughput synthesis of complex natural product-like compounds in the genomics and proteomics age. , 2002, Chemistry & biology.

[71]  S. Kroken,et al.  Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[72]  J. Martín,et al.  Evolution of the clusters of genes for β-lactam antibiotics: a model for evolutive combinatorial assembly of new β-lactams , 1998 .

[73]  C. E. Stebbins,et al.  Modulation of host signaling by a bacterial mimic: structure of the Salmonella effector SptP bound to Rac1. , 2000, Molecular cell.

[74]  B. Barrell,et al.  Complete genomes of two clinical Staphylococcus aureus strains: evidence for the rapid evolution of virulence and drug resistance. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[75]  J. Heesemann,et al.  The Yersiniabactin Biosynthetic Gene Cluster of Yersinia enterocolitica: Organization and Siderophore-Dependent Regulation , 1998, Journal of bacteriology.

[76]  Jacques Ravel,et al.  Natural combinatorial peptide libraries in cyanobacterial symbionts of marine ascidians , 2006, Nature chemical biology.

[77]  H. Ochman,et al.  Lateral gene transfer and the nature of bacterial innovation , 2000, Nature.

[78]  P. Courvalin Transfer of antibiotic resistance genes between gram-positive and gram-negative bacteria , 1994, Antimicrobial Agents and Chemotherapy.

[79]  J. Lawrence,et al.  Selfish operons: the evolutionary impact of gene clustering in prokaryotes and eukaryotes. , 1999, Current opinion in genetics & development.

[80]  Thomas Börner,et al.  Natural Biocombinatorics in the Polyketide Synthase Genes of the Actinobacterium Streptomyces avermitilis , 2006, PLoS Comput. Biol..

[81]  Sarojini Adusumilli,et al.  Giant plasmid-encoded polyketide synthases produce the macrolide toxin of Mycobacterium ulcerans. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[82]  Andreas Schirmer,et al.  Cloning and characterization of a gene cluster for geldanamycin production in Streptomyces hygroscopicus NRRL 3602. , 2003, FEMS microbiology letters.

[83]  C. Sander,et al.  Convergent evolution of similar enzymatic function on different protein folds: The hexokinase, ribokinase, and galactokinase families of sugar kinases , 1993, Protein science : a publication of the Protein Society.

[84]  Dominique Haras,et al.  The biology of lantibiotics from the lacticin 481 group is coming of age. , 2007, FEMS microbiology reviews.

[85]  M. Fischbach,et al.  Assembly-line enzymology for polyketide and nonribosomal Peptide antibiotics: logic, machinery, and mechanisms. , 2006, Chemical reviews.

[86]  W. Eisenreich,et al.  The non-mevalonate pathway of isoprenoids: genes, enzymes and intermediates. , 2001, Current opinion in chemical biology.

[87]  William Fenical,et al.  Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora tropica , 2007, Proceedings of the National Academy of Sciences.

[88]  S. Casjens,et al.  Where are the pseudogenes in bacterial genomes? , 2001, Trends in microbiology.

[89]  J. Spencer,et al.  Biosynthesis of 2-deoxystreptamine-containing aminoglycoside antibiotics. , 2006, Natural product reports.

[90]  G. Strobel,et al.  Bioprospecting for Microbial Endophytes and Their Natural Products , 2003, Microbiology and Molecular Biology Reviews.

[91]  J A Eisen,et al.  Microbial Genes in the Human Genome: Lateral Transfer or Gene Loss? , 2001, Science.

[92]  J. Thorson,et al.  Neoglycorandomization and chemoenzymatic glycorandomization: two complementary tools for natural product diversification. , 2005, Journal of natural products.

[93]  Lubbert Dijkhuizen,et al.  Organization of the teicoplanin gene cluster in Actinoplanes teichomyceticus. , 2004, Microbiology.

[94]  C. Walsh Combinatorial Biosynthesis of Antibiotics: Challenges and Opportunities , 2002, Chembiochem : a European journal of chemical biology.

[95]  Christopher T Walsh,et al.  Vancomycin assembly: nature's way. , 2003, Angewandte Chemie.

[96]  B. Bartel,et al.  Biosynthetic diversity in plant triterpene cyclization. , 2006, Current opinion in plant biology.

[97]  J Hacker,et al.  Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution , 1997, Molecular microbiology.

[98]  R. Kolter,et al.  Interactions between Streptomyces coelicolor and Bacillus subtilis: Role of Surfactants in Raising Aerial Structures , 2006, Journal of bacteriology.

[99]  M. Marahiel,et al.  Molecular and Biochemical Characterization of the Protein Template Controlling Biosynthesis of the Lipopeptide Lichenysin , 1999, Journal of bacteriology.

[100]  J. Vaitomaa,et al.  Phylogenetic evidence for the early evolution of microcystin synthesis. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[101]  E. Koonin,et al.  Horizontal gene transfer in prokaryotes: quantification and classification. , 2001, Annual review of microbiology.

[102]  C. Townsend,et al.  β-Lactam synthetase: A new biosynthetic enzyme , 1998 .

[103]  A. Bennett The Origin of Species by means of Natural Selection; or the Preservation of Favoured Races in the Struggle for Life , 1872, Nature.

[104]  J. Keasling,et al.  Engineering a mevalonate pathway in Escherichia coli for production of terpenoids , 2003, Nature Biotechnology.

[105]  R. Lenski,et al.  Dynamics of adaptation and diversification: a 10,000-generation experiment with bacterial populations. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[106]  L. Chung,et al.  The FK520 gene cluster of Streptomyces hygroscopicus var. ascomyceticus (ATCC 14891) contains genes for biosynthesis of unusual polyketide extender units. , 2000, Gene.

[107]  J. R. Hanson,et al.  Natural Products: The Secondary Metabolites , 2003 .

[108]  G. Gustafson,et al.  Butenyl-spinosyns, a natural example of genetic engineering of antibiotic biosynthetic genes , 2006, Journal of Industrial Microbiology and Biotechnology.

[109]  Jia Liu,et al.  The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[110]  S. Vokes,et al.  The aerobactin iron transport system genes in Shigella flexneri are present within a pathogenicity island , 1999, Molecular microbiology.

[111]  J. Eisen,et al.  Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[112]  V. Miao,et al.  Natural products to drugs: daptomycin and related lipopeptide antibiotics. , 2005, Natural product reports.