Dual-phase nanostructuring of layered metal oxides for high-performance aqueous rechargeable potassium ion microbatteries

Aqueous rechargeable microbatteries are promising on-chip micropower sources for a wide variety of miniaturized electronics. However, their development is plagued by state-of-the-art electrode materials due to low capacity and poor rate capability. Here we show that layered potassium vanadium oxides, K x V2O5·nH2O, have an amorphous/crystalline dual-phase nanostructure to show genuine potential as high-performance anode materials of aqueous rechargeable potassium-ion microbatteries. The dual-phase nanostructured K x V2O5·nH2O keeps large interlayer spacing while removing secondary-bound interlayer water to create sufficient channels and accommodation sites for hydrated potassium cations. This unique nanostructure facilitates accessibility/transport of guest hydrated potassium cations to significantly improve practical capacity and rate performance of the constituent K x V2O5·nH2O. The potassium-ion microbatteries with K x V2O5·nH2O anode and K x MnO2·nH2O cathode constructed on interdigital-patterned nanoporous metal current microcollectors exhibit ultrahigh energy density of 103 mWh cm−3 at electrical power comparable to carbon-based microsupercapacitors. Aqueous rechargeable microbatteries could enable new microelectronics, but their current electrode materials still suffer from low capacity and poor rate capability. Here the authors show that layered K x V2O5·nH2O with an amorphous/crystalline dual-phase nanostructure can address these issues.

[1]  S. Garaj,et al.  Size effect in ion transport through angstrom-scale slits , 2017, Science.

[2]  X. Lou,et al.  A Flexible Quasi‐Solid‐State Asymmetric Electrochemical Capacitor Based on Hierarchical Porous V2O5 Nanosheets on Carbon Nanofibers , 2015 .

[3]  Peihua Huang,et al.  On-chip and freestanding elastic carbon films for micro-supercapacitors , 2016, Science.

[4]  P. Taberna,et al.  Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors , 2010, Science.

[5]  D. Su,et al.  Biphase Cobalt–Manganese Oxide with High Capacity and Rate Performance for Aqueous Sodium‐Ion Electrochemical Energy Storage , 2018 .

[6]  A. Karma,et al.  Evolution of nanoporosity in dealloying , 2001, Nature.

[7]  Jie Yu,et al.  Weavable, Conductive Yarn-Based NiCo//Zn Textile Battery with High Energy Density and Rate Capability. , 2017, ACS nano.

[8]  Andrew McDonagh,et al.  High‐Capacity Aqueous Potassium‐Ion Batteries for Large‐Scale Energy Storage , 2017, Advanced materials.

[9]  M. Jaroniec,et al.  Na2Ti3O7@N‐Doped Carbon Hollow Spheres for Sodium‐Ion Batteries with Excellent Rate Performance , 2017, Advanced materials.

[10]  M. Mitrić,et al.  Versatile insertion capability of Na1.2V3O8 nanobelts in aqueous electrolyte solutions , 2014 .

[11]  Guoxiu Wang,et al.  Single-crystalline bilayered V2O5 nanobelts for high-capacity sodium-ion batteries. , 2013, ACS nano.

[12]  Z. Wang Self‐Powered Nanosensors and Nanosystems , 2012, Advanced materials.

[13]  Jason D. Hill,et al.  Doped Vanadium Oxides as Host Materials for Lithium Intercalation , 1999 .

[14]  B. Dunn,et al.  High‐Performance Supercapacitors Based on Intertwined CNT/V2O5 Nanowire Nanocomposites , 2011, Advanced materials.

[15]  Jihyun Hong,et al.  Aqueous rechargeable Li and Na ion batteries. , 2014, Chemical reviews.

[16]  Husam N. Alshareef,et al.  All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage , 2016, Energy & Environmental Science.

[17]  J. Hanson,et al.  Storage of potassium ions in layered vanadium pentoxide nanofiber electrodes for aqueous pseudocapacitors. , 2013, ChemSusChem.

[18]  Huaping Zhao,et al.  Advances on three‐dimensional electrodes for micro‐supercapacitors: A mini‐review , 2019, InfoMat.

[19]  John A Rogers,et al.  Holographic patterning of high-performance on-chip 3D lithium-ion microbatteries , 2015, Proceedings of the National Academy of Sciences.

[20]  S. Dou,et al.  Long-Life Room-Temperature Sodium-Sulfur Batteries by Virtue of Transition-Metal-Nanocluster-Sulfur Interactions. , 2018, Angewandte Chemie.

[21]  Linda F. Nazar,et al.  A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode , 2016, Nature Energy.

[22]  Doron Aurbach,et al.  On the Way to Rechargeable Mg Batteries: The Challenge of New Cathode Materials† , 2010 .

[23]  E. Bailón-García,et al.  Development of Vanadium‐Coated Carbon Microspheres: Electrochemical Behavior as Electrodes for Supercapacitors , 2018, Advanced Functional Materials.

[24]  Myung Sik Shin,et al.  Surfactant Effects on the Morphology and Pseudocapacitive Behavior of V2 O5 ⋅H2 O. , 2015, ChemSusChem.

[25]  P. Ajayan,et al.  Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. , 2011, Nature nanotechnology.

[26]  E. R. Nightingale,et al.  PHENOMENOLOGICAL THEORY OF ION SOLVATION. EFFECTIVE RADII OF HYDRATED IONS , 1959 .

[27]  J. Neuefeind,et al.  Structural water engaged disordered vanadium oxide nanosheets for high capacity aqueous potassium-ion storage , 2017, Nature Communications.

[28]  M. Kanatzidis,et al.  Structure of V(2)O(5)*nH(2)O xerogel solved by the atomic pair distribution function technique. , 2002, Journal of the American Chemical Society.

[29]  Peihua Huang,et al.  Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. , 2010, Nature nanotechnology.

[30]  Lei Zhang,et al.  Ultrathin Titanate Nanosheets/Graphene Films Derived from Confined Transformation for Excellent Na/K Ion Storage. , 2018, Angewandte Chemie.

[31]  Wei Huang,et al.  V2O5 embedded in vertically aligned carbon nanotube arrays as free-standing electrodes for flexible supercapacitors , 2017 .

[32]  J. Dahn,et al.  Rechargeable Lithium Batteries with Aqueous Electrolytes , 1994, Science.

[33]  Wenquan Lu,et al.  Graphene-modified nanostructured vanadium pentoxide hybrids with extraordinary electrochemical performance for Li-ion batteries , 2015, Nature Communications.

[34]  Wenhua Zuo,et al.  Bismuth oxide: a versatile high-capacity electrode material for rechargeable aqueous metal-ion batteries , 2016 .

[35]  Ruizhi Li,et al.  Carbon‐Stabilized High‐Capacity Ferroferric Oxide Nanorod Array for Flexible Solid‐State Alkaline Battery–Supercapacitor Hybrid Device with High Environmental Suitability , 2015 .

[36]  J. Tarascon,et al.  V2O5-anchored carbon nanotubes for enhanced electrochemical energy storage. , 2011, Journal of the American Chemical Society.

[37]  J. Pereira‐Ramos,et al.  A comparative insight of potassium vanadates as positive electrode materials for Li batteries: influence of the long-range and local structure. , 2014, Inorganic chemistry.

[38]  Y. Gogotsi,et al.  2D Materials with Nanoconfined Fluids for Electrochemical Energy Storage , 2017 .

[39]  J. Lewis,et al.  3D Printing of Interdigitated Li‐Ion Microbattery Architectures , 2013, Advanced materials.

[40]  Yury Gogotsi,et al.  Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes , 2018, Nature.

[41]  Xiulin Fan,et al.  High-Voltage Aqueous Magnesium Ion Batteries , 2017, ACS central science.

[42]  Yi Cui,et al.  Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. , 2011, Nano letters.

[43]  Bruce Dunn,et al.  High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. , 2013, Nature materials.

[44]  Bruce Dunn,et al.  High Areal Energy Density 3D Lithium-Ion Microbatteries , 2018 .

[45]  D. Pech,et al.  Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. , 2017, Nature nanotechnology.

[46]  Ji‐Guang Zhang,et al.  Influences of Treatment Temperature and Water Content on Capacity and Rechargeability of V 2 O 5 Xerogel Films , 2004 .

[47]  Yi Cui,et al.  The Effect of Insertion Species on Nanostructured Open Framework Hexacyanoferrate Battery Electrodes , 2011 .

[48]  Abdolreza Mirmohseni,et al.  Preparation and characterization of aqueous polyaniline battery using a modified polyaniline electrode , 2003 .

[49]  C. Raggi,et al.  Mini review , 2004 .

[50]  Jun Lu,et al.  The influence of large cations on the electrochemical properties of tunnel-structured metal oxides , 2016, Nature Communications.

[51]  J. Pereira‐Ramos,et al.  New Structural Characterization of the LixV2O5 System Provided by Raman Spectroscopy , 2006 .

[52]  A. Hagfeldt,et al.  Li+ Ion Insertion in TiO2 (Anatase). 2. Voltammetry on Nanoporous Films , 1997 .

[53]  Xuhui Yao,et al.  Rational Design of Preintercalated Electrodes for Rechargeable Batteries , 2019, ACS Energy Letters.

[54]  E. Pomerantseva,et al.  Bilayered vanadium oxides by chemical pre-intercalation of alkali and alkali-earth ions as battery electrodes , 2018 .

[55]  Xiaoli Dong,et al.  Flexible Aqueous Lithium-Ion Battery with High Safety and Large Volumetric Energy Density. , 2016, Angewandte Chemie.

[56]  Akihiko Hirata,et al.  Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. , 2011, Nature nanotechnology.

[57]  L. Mai,et al.  Sodium Ion Stabilized Vanadium Oxide Nanowire Cathode for High‐Performance Zinc‐Ion Batteries , 2018 .

[58]  Dingshan Yu,et al.  Scalable synthesis of hierarchically structured carbon nanotube–graphene fibres for capacitive energy storage , 2014, Nature Nanotechnology.

[59]  Hao Sun,et al.  Energy harvesting and storage in 1D devices , 2017 .

[60]  Derek W. Smith Ionic hydration enthalpies , 1977 .

[61]  Hong Liang,et al.  Micro‐ and Nano‐Structured Vanadium Pentoxide (V2O5) for Electrodes of Lithium‐Ion Batteries , 2017 .

[62]  Pengfei Yan,et al.  Reversible aqueous zinc/manganese oxide energy storage from conversion reactions , 2016, Nature Energy.

[63]  Chuan Zhao,et al.  Ultrafast Aqueous Potassium‐Ion Batteries Cathode for Stable Intermittent Grid‐Scale Energy Storage , 2018, Advanced Energy Materials.

[64]  Paul V Braun,et al.  High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes , 2013, Nature Communications.

[65]  Jian Luo,et al.  Pseudocapacitive Properties of Two-Dimensional Surface Vanadia Phases Formed Spontaneously on Titania. , 2016, ACS applied materials & interfaces.

[66]  Phl Peter Notten,et al.  All‐Solid‐State Lithium‐Ion Microbatteries: A Review of Various Three‐Dimensional Concepts , 2011 .

[67]  Yang Zhao,et al.  Multi-functional Flexible Aqueous Sodium-Ion Batteries with High Safety , 2017 .