Achieving full-color generation with polarization-tunable perfect light absorption

Plasmonic color generation based on gap-plasmon resonators finds an increasing role in subwavelength fade-free color printing, data storage and information encoding due to its high spatial resolution and mechanical/chemical stability. However, most of the current designs are limited to trivial spectral responses, leading to subtractive colors with restricted ranges of their color palettes. Here, we design a plasmonic color metasurface made of an aluminum resonator array, producing strong gap plasmon resonance and nearly perfect light absorption that results in enhanced color saturation. The range of color palette is broadly increased by introducing polarization-dependent supercell of plasmonic resonators, forming “i-patterned” dimers. Such a plasmonic color metasurface holds a great promise for color displays, polarization-multiplexing system, image encryption, and steganography.

[1]  Tal Ellenbogen,et al.  Chromatic plasmonic polarizers for active visible color filtering and polarimetry. , 2012, Nano letters.

[2]  Changtao Wang,et al.  Nanofocusing beyond the near-field diffraction limit via plasmonic Fano resonance. , 2016, Nanoscale.

[3]  Changtao Wang,et al.  Design principles for infrared wide-angle perfect absorber based on plasmonic structure. , 2011, Optics express.

[4]  W. Lu,et al.  Colorful solar selective absorber integrated with different colored units. , 2016, Optics express.

[5]  J. Sambles,et al.  Photonic structures in biology , 2003, Nature.

[6]  O. Martin,et al.  Full Color Generation Using Silver Tandem Nanodisks. , 2017, ACS nano.

[7]  Changtao Wang,et al.  Staked Graphene for Tunable Terahertz Absorber with Customized Bandwidth , 2016, Plasmonics.

[8]  Eun-Soo Kim,et al.  Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array. , 2014, Nano letters.

[9]  S. Gray,et al.  Aluminium plasmonics , 2014 .

[10]  A stretch-tunable plasmonic structure with a polarization-dependent response. , 2012, Optics express.

[11]  Esmaeil Heydari,et al.  Plasmonic Color Filters as Dual‐State Nanopixels for High‐Density Microimage Encoding , 2017 .

[12]  Xiangang Luo,et al.  Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging. , 2010, Nature communications.

[13]  Anders Kristensen,et al.  Plasmonic colour laser printing. , 2016, Nature nanotechnology.

[14]  Anders Kristensen,et al.  Plasmonic metasurfaces for coloration of plastic consumer products. , 2014, Nano letters.

[15]  Chul-Soon Park,et al.  Enhancement of color saturation and color gamut enabled by a dual-band color filter exhibiting an adjustable spectral response. , 2014, Optics express.

[16]  Shuichi Kinoshita,et al.  Structural colors in nature: the role of regularity and irregularity in the structure. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[17]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[18]  D. Norris,et al.  Plasmonic Films Can Easily Be Better: Rules and Recipes , 2015, ACS photonics.

[19]  Ann Roberts,et al.  The Plasmonic Pixel: Large Area, Wide Gamut Color Reproduction Using Aluminum Nanostructures. , 2016, Nano letters.

[20]  Jinghua Teng,et al.  Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays. , 2013, Nanoscale.

[21]  M. Pu,et al.  Broadband spin Hall effect of light in single nanoapertures , 2017, Light: Science & Applications.

[22]  Gorachand Ghosh,et al.  Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals , 1999 .

[23]  Michael Povolotskyi,et al.  Plasmonic metasurfaces for subtractive color filtering: optimized nonlinear regression models. , 2018, Optics letters.

[24]  Jonathan M Cooper,et al.  Dual Color Plasmonic Pixels Create a Polarization Controlled Nano Color Palette. , 2016, ACS nano.

[25]  Na Liu,et al.  Dynamic plasmonic colour display , 2017, Nature Communications.

[26]  Lei Zhang,et al.  Three-dimensional plasmonic stereoscopic prints in full colour , 2014, Nature Communications.

[27]  Junichi Takahara,et al.  Full-Color Subwavelength Printing with Gap-Plasmonic Optical Antennas. , 2016, Nano letters.

[28]  Jun Luo,et al.  Tailoring Infrared Refractory Plasmonic Material to Broadband Circularly Polarized Thermal Emitter , 2017, Plasmonics.

[29]  Xiao Ming Goh,et al.  All-metal nanostructured substrates as subtractive color reflectors with near-perfect absorptance. , 2015, Optics express.

[30]  Huigao Duan,et al.  Printing colour at the optical diffraction limit. , 2012, Nature nanotechnology.

[31]  Xiaoliang Ma,et al.  Color display and encryption with a plasmonic polarizing metamirror , 2017 .

[32]  Ole Albrektsen,et al.  Subwavelength plasmonic color printing protected for ambient use. , 2014, Nano letters.

[33]  Polarization-dependent aluminum metasurface operating at 450 nm. , 2015, Optics express.

[34]  Peter Nordlander,et al.  Vivid, full-color aluminum plasmonic pixels , 2014, Proceedings of the National Academy of Sciences.

[35]  Wenshan Cai,et al.  Metamagnetics with rainbow colors. , 2007, Optics express.

[36]  Nikolay I. Zheludev,et al.  Optical response of plasmonic relief meta-surfaces , 2012 .

[37]  Shuang Zhang,et al.  Addressable metasurfaces for dynamic holography and optical information encryption , 2018, Science Advances.

[38]  P. Nordlander,et al.  Fano Resonant Aluminum Nanoclusters for Plasmonic Colorimetric Sensing. , 2015, ACS nano.

[39]  Yijie Huo,et al.  Microlens performance limits in sub-2mum pixel CMOS image sensors. , 2010, Optics express.

[40]  S. Furukawa,et al.  Synthesis of new environment-friendly yellow pigments , 2006 .

[41]  Sergey I. Bozhevolnyi,et al.  A review of gap-surface plasmon metasurfaces: fundamentals and applications , 2018, Nanophotonics.

[42]  Eun-Soo Kim,et al.  Highly reflective subtractive color filters capitalizing on a silicon metasurface integrated with nanostructured aluminum mirrors , 2017 .

[43]  Xiangang Luo,et al.  Conversion of broadband energy to narrowband emission through double-sided metamaterials. , 2013, Optics express.

[44]  A. Kildishev,et al.  Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber , 2014, Advanced materials.

[45]  Xiaodong Yang,et al.  Structural color printing based on plasmonic metasurfaces of perfect light absorption , 2015, Scientific Reports.

[46]  P. Nordlander,et al.  Plasmonic colour generation , 2017 .

[47]  Cheng-Wei Qiu,et al.  Plasmonic color palettes for photorealistic printing with aluminum nanostructures. , 2014, Nano letters.

[48]  Alexandra Boltasseva,et al.  Ultrathin and multicolour optical cavities with embedded metasurfaces , 2017, Nature Communications.