Infrared spectroscopic characterization of mineralized tissues.

Vibrational spectroscopy (Infrared and Raman), and in particular micro-spectroscopy and micro-spectroscopic imaging has been used to characterize developmental changes in bone and other mineralized tissues, to monitor these changes in cell cultures, and to detect disease and drug-induced modifications. Examples of the use of infrared micro-spectroscopy and micro-spectroscopic imaging are discussed in this review.

[1]  J. Eisman,et al.  Targeted Overexpression of Vitamin D Receptor in Osteoblasts Increases Calcium Concentration Without Affecting Structural Properties of Bone Mineral Crystals , 2003, Calcified Tissue International.

[2]  S. Doty,et al.  Spectroscopic Imaging of Mineral Maturation in Bovine Dentin , 2003, Journal of dental research.

[3]  G. Daculsi,et al.  Transmission FT-IR microspectroscopy of mineral phases in calcified tissues. , 1998, Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie.

[4]  David C. Smith,et al.  Nacre initiates biomineralization by human osteoblasts maintained In Vitro , 1992, Calcified Tissue International.

[5]  Michael D Morris,et al.  Mineralization of Developing Mouse Calvaria as Revealed by Raman Microspectroscopy , 2002, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[6]  J. Currey,et al.  The mechanical consequences of variation in the mineral content of bone. , 1969, Journal of biomechanics.

[7]  A. Boskey,et al.  Infrared Microscopy and Imaging of Hard and Soft Tissues , 2007 .

[8]  D. Burr,et al.  Bone Mineral and Collagen Quality in Humeri of Ovariectomized Cynomolgus Monkeys Given rhPTH(1–34) for 18 Months , 2003, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[9]  D. L. Cochran,et al.  Osteoblast-Mediated Mineral Deposition in Culture is Dependent on Surface Microtopography , 2002, Calcified Tissue International.

[10]  S. Goldstein,et al.  Brittle IV Mouse Model for Osteogenesis Imperfecta IV Demonstrates Postpubertal Adaptations to Improve Whole Bone Strength , 2004, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[11]  A. Hassankhani,et al.  FT-IR microscopy of endochondral ossification at 20μ spatial resolution , 2007, Calcified Tissue International.

[12]  G. Daculsi,et al.  Phosphate Is a Specific Signal for ATDC5 Chondrocyte Maturation and Apoptosis‐Associated Mineralization: Possible Implication of Apoptosis in the Regulation of Endochondral Ossification , 2003, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[13]  A L Boskey,et al.  Mineral changes in a mouse model of osteogenesis imperfecta detected by Fourier transform infrared microscopy. , 1996, Connective tissue research.

[14]  P Zioupos,et al.  The effects of ageing and changes in mineral content in degrading the toughness of human femora. , 1997, Journal of biomechanics.

[15]  A. Boskey,et al.  Articular cartilage vesicles generate calcium pyrophosphate dihydrate-like crystals in vitro. , 1992, Arthritis and rheumatism.

[16]  J. Currey The many adaptations of bone. , 2003, Journal of biomechanics.

[17]  N. Futran,et al.  Destructive tophaceous calcium hydroxyapatite tumor of the infratemporal fossa. Case report and review of the literature. , 1999, Journal of neurosurgery.

[18]  A. Boskey,et al.  Calcitonin Alters Bone Quality in Beagle Dogs , 1997, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[19]  A. Boskey,et al.  The role of type X collagen in endochondral ossification as deduced by Fourier transform infrared microscopy analysis. , 1996, Connective tissue research.

[20]  S. Goldstein,et al.  Targeted disruption of the biglycan gene leads to an osteoporosis-like phenotype in mice , 1998, Nature Genetics.

[21]  D. Hamerman,et al.  Alterations in mineral composition observed in osteoarthritic joints of cynomolgus monkeys. , 2004, Bone.

[22]  A. Boskey,et al.  FTIR Microspectroscopic Analysis of Human Iliac Crest Biopsies from Untreated Osteoporotic Bone , 1997, Calcified Tissue International.

[23]  B. Frenkel,et al.  Bone Morphogenetic Protein‐2 Restores Mineralization in Glucocorticoid‐Inhibited MC3T3‐E1 Osteoblast Cultures , 2003, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[24]  D. Deutsch,et al.  Thermal decomposition of developing enamel , 1990, Calcified Tissue International.

[25]  Georges Boivin,et al.  Infrared imaging of calcified tissue in bone biopsies from adults with osteomalacia. , 2005, Bone.

[26]  H. J. Tochon-Danguy,et al.  Physical and Chemical Analyses of the Mineral Substance during the Development o f Two Experimental Cutaneous Calcifications in Rats: Topical Calciphylaxis and Topical Calcergy , 1983, Zeitschrift fur Naturforschung. Section C, Biosciences.

[27]  W. E. Brown,et al.  Physicochemical properties of calcific deposits isolated from porcine bioprosthetic heart valves removed from patients following 2-13 years function. , 1994, Journal of biomedical materials research.

[28]  R. Recker,et al.  Distribution of Collagen Cross‐Links in Normal Human Trabecular Bone , 2003, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[29]  A. Boskey,et al.  Osteopontin Deficiency Increases Mineral Content and Mineral Crystallinity in Mouse Bone , 2002, Calcified Tissue International.

[30]  R Mendelsohn,et al.  Spectroscopic Characterization of Collagen Cross‐Links in Bone , 2001, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[31]  J. Hamada,et al.  Analysis of calcium deposits in calcific periarthritis. , 2001, The Journal of rheumatology.

[32]  A. Boskey,et al.  Hydroxyapatite formation in the presence of proteoglycans of reduced sulfate content: Studies in the brachymorphic mouse , 1991, Calcified Tissue International.

[33]  A L Boskey,et al.  The Material Basis for Reduced Mechanical Properties in oim Mice Bones , 1999, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[34]  D. Saloner,et al.  Biochemical characterization of atherosclerotic plaque constituents using FTIR spectroscopy and histology. , 2003, Journal of biomedical materials research. Part A.

[35]  A. Boskey,et al.  Fourier transform infrared microspectroscopic analysis of bones of osteocalcin-deficient mice provides insight into the function of osteocalcin. , 1998, Bone.

[36]  S. Doty,et al.  BMP‐6 accelerates both chondrogenesis and mineral maturation in differentiating chick limb‐bud mesenchymal cell cultures , 2002, Journal of cellular biochemistry.

[37]  A. Boskey Bone mineral crystal size , 2003, Osteoporosis International.

[38]  L. Jarczyk,et al.  Calcification of the aortic wall in hypercalcemic rabbits. , 1992, Experimental and toxicologic pathology : official journal of the Gesellschaft fur Toxikologische Pathologie.

[39]  S. Doty,et al.  Type I collagen influences cartilage calcification: An immunoblocking study in differentiating chick limb‐bud mesenchymal cell cultures , 2000, Journal of cellular biochemistry.

[40]  D. Mccarty,et al.  Crystal populations in human synovial fluid. Identification of apatite, octacalcium phosphate, and tricalcium phosphate. , 1983, Arthritis and rheumatism.

[41]  A. Boskey,et al.  Fourier transform infrared microscopy of calcified turkey leg tendon , 2006, Calcified Tissue International.

[42]  A. Boskey,et al.  Infrared Analysis of the Mineral and Matrix in Bones of Osteonectin‐Null Mice and Their Wildtype Controls , 2003, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[43]  A. Boskey,et al.  Overexpression of IGF-Binding Protein 5 Alters Mineral and Matrix Properties in Mouse Femora: An Infrared Imaging Study , 2005, Calcified Tissue International.

[44]  Toshitaka Nakamura,et al.  Regulation of mineral-to-matrix ratio of lumbar trabecular bone in ovariectomized rats treated with risedronate in combination with or without vitamin K2 , 2004, Journal of Bone and Mineral Metabolism.

[45]  Landulfo Silveira,et al.  Correlation between near‐infrared Raman spectroscopy and the histopathological analysis of atherosclerosis in human coronary arteries , 2002, Lasers in surgery and medicine.

[46]  A. Boskey,et al.  FTIR microspectroscopic analysis of human osteonal bone , 1996, Calcified Tissue International.

[47]  O. Boachie-Adjei,et al.  The distribution of calcific deposits in intervertebral discs of the lumbosacral spine. , 1990, Clinical orthopaedics and related research.

[48]  A. Motta,et al.  Fibroin hydrogels for biomedical applications: preparation, characterization and in vitro cell culture studies , 2004, Journal of biomaterials science. Polymer edition.

[49]  A. Boskey,et al.  FT-IR microscopic mappings of early mineralization in chick limb bud mesenchymal cell cultures , 1992, Calcified Tissue International.

[50]  G. Martin,et al.  Deciphering skeletal patterning: clues from the limb , 2003, Nature.

[51]  H. M. Kim,et al.  Characterization of the apatite crystals of bone and their maturation in osteoblast cell culture: comparison with native bone crystals. , 1996, Connective tissue research.

[52]  A. Boskey,et al.  Effects of transforming growth factor-beta deficiency on bone development: a Fourier transform-infrared imaging analysis. , 2002, Bone.

[53]  A. Boskey,et al.  Polarized FT-IR microscopy of calcified turkey leg tendon. , 1996, Connective tissue research.

[54]  L. Bonewald,et al.  Establishment of an Osteoid Preosteocyte‐like Cell MLO‐A5 That Spontaneously Mineralizes in Culture , 2001, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[55]  M. Kassem,et al.  Effect of Hormone Replacement Therapy on Bone Quality in Early Postmenopausal Women , 2003, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[56]  L. Hench,et al.  Bioactive evaluation of 45S5 bioactive glass fibres and preliminary study of human osteoblast attachment , 2004, Journal of materials science. Materials in medicine.

[57]  Ray Fleming,et al.  NIH Consensus Panel Addresses Osteoporosis Prevention, Diagnosis, and Therapy , 2000 .

[58]  H. Anderson,et al.  Impaired calcification around matrix vesicles of growth plate and bone in alkaline phosphatase-deficient mice. , 2004, The American journal of pathology.

[59]  S. Gerlach,et al.  Diagnosis and Therapy , 1981 .

[60]  I. About,et al.  Human dentin production in vitro. , 2000, Experimental cell research.

[61]  N. Camacho,et al.  Fourier Transform Infrared Imaging Spectroscopy (FT-IRIS) of Mineralization in Bisphosphonate-treated oim/oim Mice , 2003, Calcified Tissue International.

[62]  M. Glimcher,et al.  Structural studies of the mineral phase of calcifying cartilage , 1991, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[63]  A. Boskey Bone mineral and matrix. Are they altered in osteoporosis? , 1990, The Orthopedic clinics of North America.

[64]  S. Ott,et al.  Mineral Changes in Osteoporosis: A Review , 2006, Clinical orthopaedics and related research.

[65]  L. Bonewald,et al.  Von Kossa Staining Alone Is Not Sufficient to Confirm that Mineralization In Vitro Represents Bone Formation , 2003, Calcified Tissue International.

[66]  A. Boskey Mineral changes in osteopetrosis. , 2003, Critical reviews in eukaryotic gene expression.

[67]  R Mendelsohn,et al.  Novel infrared spectroscopic method for the determination of crystallinity of hydroxyapatite minerals. , 1991, Biophysical journal.

[68]  A. Boskey,et al.  Viable cells are a requirement forIn vitro cartilage calcification , 1996, Calcified Tissue International.

[69]  W. C. Hayes,et al.  The Effect of Trabecular Structure on DXA-based Predictions of Bovine Bone Failure , 1998, Calcified Tissue International.

[70]  I. About,et al.  Influence of resinous monomers on the differentiation in vitro of human pulp cells into odontoblasts. , 2002, Journal of biomedical materials research.

[71]  R. Mendelsohn,et al.  Infrared Microscopic Imaging of Bone: Spatial Distribution of CO32− , 2001, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[72]  B. Tomazic Physicochemical principles of cardiovascular calcification , 2001, Zeitschrift für Kardiologie.

[73]  R Mendelsohn,et al.  Fourier transform infrared microspectroscopic analysis identifies alterations in mineral properties in bones from mice transgenic for type X collagen. , 1996, Bone.

[74]  T J Sims,et al.  Properties of Collagen in OIM Mouse Tissues , 2003, Connective tissue research.

[75]  A. Boskey,et al.  Fourier transform infrared spectroscopy of the solution-mediated conversion of amorphous calcium phosphate to hydroxyapatite: New correlations between X-ray diffraction and infrared data , 2006, Calcified Tissue International.

[76]  I. About,et al.  Molecular Aspects of Tooth Pathogenesis and Repair: in vivo and in vitro Models , 2001, Advances in dental research.

[77]  J L Ackerman,et al.  Structure, Composition, and Maturation of Newly Deposited Calcium‐Phosphate Crystals in Chicken Osteoblast Cell Cultures , 2000, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[78]  J. Gärtner,et al.  Analysis of calcific deposits in calcifying tendinitis. , 1990, Clinical orthopaedics and related research.