Predicting the relative solubilities of racemic and enantiopure crystals by density-functional theory.

Isolation of chiral molecules as pure enantiomers remains a fundamental challenge in chemical research. Enantioselective enrichment through preferential crystallization is an efficient method to achieve enantiopure compounds, but its applicability depends on the relative stability of the enantiopure and racemic crystal forms. Using a simple thermodynamic model and first-principles density-functional calculations, it is possible to predict the difference in solubility between the enantiopure and racemic solid phases. This approach uses dispersion-corrected density functionals and is capable of accurately predicting the solution-phase entantiomeric excess to within about 10 % of experimental measurements on average. The accuracy of the exchange-hole dipole moment (XDM) model of dispersion enables the viability of the proposed method.

[1]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[2]  Peter R. Schreiner,et al.  Evolution of asymmetric organocatalysis: multi- and retrocatalysis , 2012 .

[3]  F. London,et al.  Zur Theorie und Systematik der Molekularkräfte , 1930 .

[4]  Troy Van Voorhis,et al.  Nonlocal van der Waals density functional: the simpler the better. , 2010, The Journal of chemical physics.

[5]  A. Gavezzotti,et al.  Polymorphic Forms of Organic Crystals at Room Conditions: Thermodynamic and Structural Implications , 1995 .

[6]  F. Leusen,et al.  Predicting spontaneous racemate resolution using recent developments in crystal structure prediction , 2009 .

[7]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[8]  D. Blackmond,et al.  Chemical and physical models for the emergence of biological homochirality. , 2013, Topics in current chemistry.

[9]  Axel D. Becke,et al.  On the large‐gradient behavior of the density functional exchange energy , 1986 .

[10]  A. Otero-de-la-Roza,et al.  Non-covalent interactions and thermochemistry using XDM-corrected hybrid and range-separated hybrid density functionals. , 2013, The Journal of chemical physics.

[11]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[12]  H. M. Huffman,et al.  Thermal Data. VIII. The Heat Capacities, Entropies and Free Energies of Some Amino Acids , 1937 .

[13]  R. Kellogg,et al.  Resolution of Omeprazole Using Coupled Preferential Crystallization: Efficient Separation of a Nonracemizable Conglomerate Salt under Near-Equilibrium Conditions , 2013 .

[14]  Andrew J. P. White,et al.  Rationalization and prediction of solution enantiomeric excess in ternary phase systems. , 2006, Angewandte Chemie.

[15]  Edmanuel Torres,et al.  A (Nearly) Universally Applicable Method for Modeling Noncovalent Interactions Using B3LYP. , 2012, The journal of physical chemistry letters.

[16]  A. Otero-de-la-Roza,et al.  Van der Waals interactions in solids using the exchange-hole dipole moment model. , 2012, The Journal of chemical physics.

[17]  J. Novoa,et al.  A density functional study of crystalline acetic acid and its proton transfer polymorphic forms , 2000 .

[18]  G. Coquerel,et al.  Pitfalls and rewards of preferential crystallization , 2010 .

[19]  Claire S. Adjiman,et al.  Towards crystal structure prediction of complex organic compounds – a report on the fifth blind test , 2011, Acta crystallographica. Section B, Structural science.

[20]  A. Tkatchenko,et al.  Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. , 2009, Physical review letters.

[21]  Achim Kienle,et al.  Evaluation of Competing Process Concepts for the Production of Pure Enantiomers , 2012 .

[22]  F. Allen The Cambridge Structural Database: a quarter of a million crystal structures and rising. , 2002, Acta crystallographica. Section B, Structural science.

[23]  A. Otero-de-la-Roza,et al.  A benchmark for non-covalent interactions in solids. , 2012, The Journal of chemical physics.

[24]  D. Blackmond,et al.  Pasteur's tweezers revisited: on the mechanism of attrition-enhanced deracemization and resolution of chiral conglomerate solids. , 2012, Journal of the American Chemical Society.

[25]  D. Blackmond,et al.  The origin of biological homochirality. , 2010, Cold Spring Harbor perspectives in biology.

[26]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[27]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[28]  A. Becke,et al.  Exchange-hole dipole moment and the dispersion interaction revisited. , 2007, The Journal of chemical physics.

[29]  Kyuho Lee,et al.  Higher-accuracy van der Waals density functional , 2010, 1003.5255.

[30]  S. Fox,et al.  Thermal Data. VI. The Heats of Combustion and Free Energies of Seven Organic Compounds Containing Nitrogen , 1936 .