Opers and the twisted Bogomolny equations
暂无分享,去创建一个
[1] R. Mazzeo,et al. Classification of Nahm pole solutions of the Kapustin-Witten equations on $S^1\times \Sigma\times \mathbb{R}^+$ , 2019, 1901.00274.
[2] Ciprian Manolescu,et al. A sheaf‐theoretic SL(2,C) Floer homology for knots , 2018, Proceedings of the London Mathematical Society.
[3] Richard A. Wentworth,et al. Conformal limits and the Bialynicki-Birula stratification of the space of lambda-connections , 2018, 1808.01622.
[4] R. Mazzeo,et al. The extended Bogomolny equations with generalized Nahm pole boundary conditions, II , 2018, Duke Mathematical Journal.
[5] C. Taubes. Sequences of Nahm pole solutions to the SU(2) Kapustin-Witten equations , 2018, 1805.02773.
[6] N. Leung,et al. Energy Bound for Kapustin–Witten Solutions on S3 × ℝ+ , 2018, International Mathematics Research Notices.
[7] E. Witten,et al. The KW equations and the Nahm pole boundary condition with knots , 2017, Communications in Analysis and Geometry.
[8] R. Mazzeo,et al. The extended Bogomolny equations and generalized Nahm pole boundary condition , 2017, Geometry & Topology.
[9] V. Mikhaylov. Teichmüller TQFT vs. Chern-Simons theory , 2017, 1710.04354.
[10] Ciprian Manolescu,et al. A sheaf-theoretic model for SL(2,C) Floer homology , 2017, 1708.00289.
[11] Siqi He. A gluing theorem for the Kapustin–Witten equations with a Nahm pole , 2017, Journal of Topology.
[12] C. Vafa,et al. BPS spectra and 3-manifold invariants , 2017, Journal of Knot Theory and Its Ramifications.
[13] E. Witten. Two lectures on gauge theory and Khovanov homology , 2016, Proceedings of Symposia in Pure Mathematics.
[14] Qiongling Li,et al. Asymptotics of Higgs bundles in the Hitchin component , 2014, 1405.1106.
[15] Richard A. Wentworth,et al. Higgs Bundles and Local Systems on Riemann Surfaces , 2014, 1402.4203.
[16] E. Witten. Two Lectures On The Jones Polynomial And Khovanov Homology , 2014, 1401.6996.
[17] F. Atiyah. Geometry of Yang-Mills fields , 2013 .
[18] E. Witten,et al. Knot Invariants from Four-Dimensional Gauge Theory , 2011, 1106.4789.
[19] E. Witten. Fivebranes and Knots , 2011, 1101.3216.
[20] E. Witten,et al. Electric-Magnetic Duality And The Geometric Langlands Program , 2006, hep-th/0604151.
[21] N. Hitchin. LIE-GROUPS AND TEICHMULLER SPACE , 1992 .
[22] C. Simpson. Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization , 1988 .
[23] N. Hitchin. THE SELF-DUALITY EQUATIONS ON A RIEMANN SURFACE , 1987 .
[24] A. Teleman,et al. The Kobayashi-Hitchin correspondence , 1995 .
[25] Mazzeo Rafe. Elliptic theory of differential edge operators I , 1991 .
[26] Kevin Corlette,et al. Flat $G$-bundles with canonical metrics , 1988 .
[27] N. Hitchin. Stable bundles and integrable systems , 1987 .
[28] S. Donaldson. Infinite determinants, stable bundles and curvature , 1987 .
[29] Karen K. Uhlenbeck,et al. On the existence of hermitian‐yang‐mills connections in stable vector bundles , 1986 .
[30] S. Donaldson. Anti Self‐Dual Yang‐Mills Connections Over Complex Algebraic Surfaces and Stable Vector Bundles , 1985 .