Opers and the twisted Bogomolny equations

In this paper, we study the dimensionally reduced twisted Kapustin-Witten equations on the product of a compact Riemann surface $\Sigma$ with $\mathbb{R}^+$. The main result is a Kobayashi-Hitchin type correspondence between the space of tilted Nahm pole solutions and the moduli space of Beilinson-Drinfeld opers. This corroborates a prediction of Gaiotto and Witten \cite[p.971]{gaiotto2012knot}.

[1]  R. Mazzeo,et al.  Classification of Nahm pole solutions of the Kapustin-Witten equations on $S^1\times \Sigma\times \mathbb{R}^+$ , 2019, 1901.00274.

[2]  Ciprian Manolescu,et al.  A sheaf‐theoretic SL(2,C) Floer homology for knots , 2018, Proceedings of the London Mathematical Society.

[3]  Richard A. Wentworth,et al.  Conformal limits and the Bialynicki-Birula stratification of the space of lambda-connections , 2018, 1808.01622.

[4]  R. Mazzeo,et al.  The extended Bogomolny equations with generalized Nahm pole boundary conditions, II , 2018, Duke Mathematical Journal.

[5]  C. Taubes Sequences of Nahm pole solutions to the SU(2) Kapustin-Witten equations , 2018, 1805.02773.

[6]  N. Leung,et al.  Energy Bound for Kapustin–Witten Solutions on S3 × ℝ+ , 2018, International Mathematics Research Notices.

[7]  E. Witten,et al.  The KW equations and the Nahm pole boundary condition with knots , 2017, Communications in Analysis and Geometry.

[8]  R. Mazzeo,et al.  The extended Bogomolny equations and generalized Nahm pole boundary condition , 2017, Geometry & Topology.

[9]  V. Mikhaylov Teichmüller TQFT vs. Chern-Simons theory , 2017, 1710.04354.

[10]  Ciprian Manolescu,et al.  A sheaf-theoretic model for SL(2,C) Floer homology , 2017, 1708.00289.

[11]  Siqi He A gluing theorem for the Kapustin–Witten equations with a Nahm pole , 2017, Journal of Topology.

[12]  C. Vafa,et al.  BPS spectra and 3-manifold invariants , 2017, Journal of Knot Theory and Its Ramifications.

[13]  E. Witten Two lectures on gauge theory and Khovanov homology , 2016, Proceedings of Symposia in Pure Mathematics.

[14]  Qiongling Li,et al.  Asymptotics of Higgs bundles in the Hitchin component , 2014, 1405.1106.

[15]  Richard A. Wentworth,et al.  Higgs Bundles and Local Systems on Riemann Surfaces , 2014, 1402.4203.

[16]  E. Witten Two Lectures On The Jones Polynomial And Khovanov Homology , 2014, 1401.6996.

[17]  F. Atiyah Geometry of Yang-Mills fields , 2013 .

[18]  E. Witten,et al.  Knot Invariants from Four-Dimensional Gauge Theory , 2011, 1106.4789.

[19]  E. Witten Fivebranes and Knots , 2011, 1101.3216.

[20]  E. Witten,et al.  Electric-Magnetic Duality And The Geometric Langlands Program , 2006, hep-th/0604151.

[21]  N. Hitchin LIE-GROUPS AND TEICHMULLER SPACE , 1992 .

[22]  C. Simpson Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization , 1988 .

[23]  N. Hitchin THE SELF-DUALITY EQUATIONS ON A RIEMANN SURFACE , 1987 .

[24]  A. Teleman,et al.  The Kobayashi-Hitchin correspondence , 1995 .

[25]  Mazzeo Rafe Elliptic theory of differential edge operators I , 1991 .

[26]  Kevin Corlette,et al.  Flat $G$-bundles with canonical metrics , 1988 .

[27]  N. Hitchin Stable bundles and integrable systems , 1987 .

[28]  S. Donaldson Infinite determinants, stable bundles and curvature , 1987 .

[29]  Karen K. Uhlenbeck,et al.  On the existence of hermitian‐yang‐mills connections in stable vector bundles , 1986 .

[30]  S. Donaldson Anti Self‐Dual Yang‐Mills Connections Over Complex Algebraic Surfaces and Stable Vector Bundles , 1985 .