Multicrystalline Silicon Thin‐Film Solar Cells Based on Vanadium Oxide Heterojunction and Laser‐Doped Contacts

Liquid phase crystallized (LPC) silicon thin films on glass substrates are a feasible alternative to conventional crystalline silicon (c‐Si) wafers for solar cells. Due to substrate limitation, a low‐temperature technology is needed for solar cell fabrication. While silicon heterojunction is typically used, herein, the combination of vanadium oxide/c‐Si heterojunction as emitter and base contacts defined by IR laser processing of phosphorus‐doped amorphous silicon carbide stacks is explored. LPC solar cells are fabricated using such technologies to identify their issues and advantages with a promising performance of an active‐area efficiency of 5.6%. Apart from the absence of light‐trapping techniques, the relatively low efficiency obtained is attributed to a low lifetime in the LPC silicon bulk. These poor material properties imply a short diffusion length that makes it that only photogenerated carriers in the emitter regions can be collected. Consequently, future devices should show narrower base contact regions, suggesting a shorter‐wavelength laser, combined with longer LPC substrate lifetimes.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[3]  M. Green Solar Cells : Operating Principles, Technology and System Applications , 1981 .

[4]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[5]  Harold Dekkers,et al.  Very low surface recombination velocities on p-type silicon wafers passivated with a dielectric with fixed negative charge , 2006 .

[6]  B. Hoex,et al.  Surface passivation of phosphorus‐diffused n+‐type emitters by plasma‐assisted atomic‐layer deposited Al2O3 , 2012 .

[7]  A. Fell,et al.  A Free and Fast Three-Dimensional/Two-Dimensional Solar Cell Simulator Featuring Conductive Boundary and Quasi-Neutrality Approximations , 2013, IEEE Transactions on Electron Devices.

[8]  C. Voz,et al.  Surface passivation and optical characterization of Al2O3/a-SiCx stacks on c-Si substrates , 2013, Beilstein journal of nanotechnology.

[9]  Martin A. Green,et al.  Progress in Laser-Crystallized Thin-Film Polycrystalline Silicon Solar Cells: Intermediate Layers, Light Trapping, and Metallization , 2014, IEEE Journal of Photovoltaics.

[10]  C. Battaglia,et al.  Hole selective MoOx contact for silicon solar cells. , 2014, Nano letters.

[11]  G. Jia,et al.  Nanotechnology enhanced solar cells prepared on laser-crystallized polycrystalline thin films (<10 µm) , 2014 .

[12]  Bernd Rech,et al.  Towards wafer quality crystalline silicon thin-film solar cells on glass , 2014 .

[13]  B. Rech,et al.  Silicon Thin-Film Solar Cells on Glass With Open-Circuit Voltages Above 620 mV Formed by Liquid-Phase Crystallization , 2014, IEEE Journal of Photovoltaics.

[14]  A. Gawlik,et al.  Optimized emitter contacting on multicrystalline silicon thin film solar cells , 2015 .

[15]  Multicrystalline silicon thin film solar cells on glass with epitaxially grown emitter prepared by a two‐step laser crystallization process , 2015 .

[16]  F. Falk,et al.  PEDOT:PSS emitters on multicrystalline silicon thin-film absorbers for hybrid solar cells , 2015 .

[17]  G. Pazour,et al.  Ror2 signaling regulates Golgi structure and transport through IFT20 for tumor invasiveness , 2017, Scientific Reports.

[18]  A. Gawlik,et al.  Carrier Lifetime in Liquid-phase Crystallized Silicon on Glass , 2016 .

[19]  C. Voz,et al.  Transition metal oxides as hole-selective contacts in silicon heterojunctions solar cells , 2016 .

[20]  Pablo Rafael Ortega Villasclaras,et al.  Interdigitated laser-contacted solar cell on liquid-phase crystallized silicon on glass , 2016 .

[21]  C. Voz,et al.  Fully low temperature interdigitated back-contacted c-Si(n) solar cells based on laser-doping from dielectric stacks , 2017 .

[22]  G. Jia,et al.  Evaluation of light trapping structures for liquid‐phase crystallized silicon on glass (LPCSG) , 2017 .

[23]  R. Alcubilla,et al.  Silicon solar cells with heterojunction emitters and laser processed base contacts , 2017 .

[24]  Zhengshan J. Yu,et al.  Improved light management in planar silicon and perovskite solar cells using PDMS scattering layer , 2017 .

[25]  B. Rech,et al.  Silicon Solar Cells on Glass with Power Conversion Efficiency above 13% at Thickness below 15 Micrometer , 2017, Scientific Reports.

[26]  A. Gawlik,et al.  Applicability of an economic diode laser emitting at 980 nm for preparation of polycrystalline silicon thin film solar cells on glass , 2017 .

[27]  C. Voz,et al.  V2Ox-based hole-selective contacts for c-Si interdigitated back-contacted solar cells , 2017 .

[28]  G. Jia,et al.  Bifacial multicrystalline silicon thin film solar cells , 2017 .

[29]  B. Rech,et al.  Potential of interdigitated back-contact silicon heterojunction solar cells for liquid phase crystallized silicon on glass with efficiency above 14% , 2018 .

[30]  R. Alcubilla,et al.  Impact of c-Si Surface Passivating Layer Thickness on n+ Laser-Doped Contacts Based on Silicon Carbide Films , 2018, IEEE Journal of Photovoltaics.

[31]  P. Alam ‘N’ , 2021, Composites Engineering: An A–Z Guide.

[32]  P. Alam,et al.  R , 1823, The Herodotus Encyclopedia.