The KCNQ2/3 selective channel opener ICA-27243 binds to a novel voltage-sensor domain site

The mammalian KCNQ (Kv7) gene family is composed of five members (KCNQ1-5). KCNQ2, Q4 and Q5 (KCNQ2-5) channels co-express with KCNQ3 to form heterotetrameric voltage-gated K(+) (KCNQ2-5/3) channels that underlie the endogenous M-current and regulate neuronal excitability in CNS and PNS neurons. Openers of one or a mixture of these channels may be an attractive therapeutic agent for epilepsy and pain. Non-selective KCNQ2-5/3 activators have shown efficacy in pre-clinical and clinical studies. However, more selective pharmacological profiles, including greater KCNQ sub-type-selective activation, could provide efficacy with fewer side effects. One such compound, ICA-27243, sub-type selectively enhances the activation of KCNQ2/3 channels and also exhibits efficacy in pre-clinical anticonvulsant models; Roeloffs et al. (2008) [15]; Wickenden et al. (2008) [27]. The binding site of non-selective KCNQ2-5/3 openers maps to the S5-S6 pore domain and is altered by mutation of a tryptophan residue (Trp236 in KCNQ2, Trp265 in KCNQ3) conserved among KCNQ2-5 channels; Schenzer et al. (2005) [19]; Wuttke et al. (2005) [30]. Here we report that the activity of the KCNQ2/3 selective opener ICA-27243 is not affected by these Trp mutations and does not map to the S5-S6 domain. Rather, the selective activity of ICA-27243 is determined by a novel site within the S1-S4 voltage-sensor domain (VSD) of KCNQ channels. The sub-type-selective activity of ICA-27243 may arise from greater sequence diversity of KCNQ family members within the ICA-27243 binding pocket, allowing for more selective small molecule-protein interactions.

[1]  Holger Lerche,et al.  The New Anticonvulsant Retigabine Favors Voltage-Dependent Opening of the Kv7.2 (KCNQ2) Channel by Binding to Its Activation Gate , 2005, Molecular Pharmacology.

[2]  P. Coumel,et al.  A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardioauditory syndrome , 1997, Nature Genetics.

[3]  A. Wei,et al.  Molecular Cloning and Functional Expression of KCNQ5, a Potassium Channel Subunit That May Contribute to Neuronal M-current Diversity* , 2000, The Journal of Biological Chemistry.

[4]  W. A. Wilson,et al.  N-(6-Chloro-pyridin-3-yl)-3,4-difluoro-benzamide (ICA-27243): A Novel, Selective KCNQ2/Q3 Potassium Channel Activator , 2008, Molecular Pharmacology.

[5]  D. A. Brown,et al.  Activation of Expressed KCNQ Potassium Currents and Native Neuronal M-Type Potassium Currents by the Anti-Convulsant Drug Retigabine , 2001, The Journal of Neuroscience.

[6]  G. Landes,et al.  Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias , 1996, Nature Genetics.

[7]  M. Sanguinetti,et al.  Pharmacological Activation of Normal and Arrhythmia-Associated Mutant KCNQ1 Potassium Channels , 2003, Circulation research.

[8]  W. Alves,et al.  Randomized, multicenter, dose-ranging trial of retigabine for partial-onset seizures , 2007, Neurology.

[9]  James O McNamara,et al.  In Vivo Profile of ICA-27243 [N-(6-Chloro-pyridin-3-yl)-3,4-difluoro-benzamide], a Potent and Selective KCNQ2/Q3 (Kv7.2/Kv7.3) Activator in Rodent Anticonvulsant Models , 2008, Journal of Pharmacology and Experimental Therapeutics.

[10]  V. Gribkoff The therapeutic potential of neuronal KV7 (KCNQ) channel modulators: an update , 2008 .

[11]  R. Netzer,et al.  The novel anticonvulsant retigabine activates M-currents in Chinese hamster ovary-cells tranfected with human KCNQ2/3 subunits , 2000, Neuroscience Letters.

[12]  Thomas Friedrich,et al.  KCNQ4, a Novel Potassium Channel Expressed in Sensory Outer Hair Cells, Is Mutated in Dominant Deafness , 1999, Cell.

[13]  W. Löscher,et al.  D-23129: a new anticonvulsant with a broad spectrum activity in animal models of epileptic seizures , 1996, Epilepsy Research.

[14]  T. Jegla,et al.  Characterization of KCNQ5/Q3 potassium channels expressed in mammalian cells , 2001, British journal of pharmacology.

[15]  Mark Leppert,et al.  A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns , 1998, Nature Genetics.

[16]  Thomas Friedrich,et al.  Refinement of the Binding Site and Mode of Action of the Anticonvulsant Retigabine on KCNQ K+ Channels , 2009, Molecular Pharmacology.

[17]  E. Campbell,et al.  Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment , 2007, Nature.

[18]  T. Jegla,et al.  Retigabine, a novel anti-convulsant, enhances activation of KCNQ2/Q3 potassium channels. , 2000, Molecular pharmacology.

[19]  S. Burbidge,et al.  Modulation of KCNQ2/3 potassium channels by the novel anticonvulsant retigabine. , 2000, Molecular pharmacology.

[20]  B S Brown,et al.  KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel. , 1998, Science.

[21]  I. Kapetanovic,et al.  The effects of D-23129, a new experimental anticonvulsant drug, on neurotransmitter amino acids in the rat hippocampus in vitro , 1995, Epilepsy Research.

[22]  Thomas Friedrich,et al.  A carboxy‐terminal domain determines the subunit specificity of KCNQ K+ channel assembly , 2003, EMBO reports.

[23]  R. Netzer,et al.  Investigations into the Mechanism of Action of the New Anticonvulsant Retigabine - Interaction with GABAergic and glutamatergic neurotransmission and with voltage gated ion channels , 2000, Arzneimittelforschung.

[24]  Nicole Schmitt,et al.  The acrylamide (S)-1 differentially affects Kv7 (KCNQ) potassium channels , 2006, Neuropharmacology.

[25]  M. Caprini,et al.  Structural and functional modularity of voltage‐gated potassium channels , 1999, FEBS letters.

[26]  Zhe Lu,et al.  Coupling between Voltage Sensors and Activation Gate in Voltage-gated K+ Channels , 2002, The Journal of general physiology.

[27]  S. Berkovic,et al.  A potassium channel mutation in neonatal human epilepsy. , 1998, Science.

[28]  Q. Xiong,et al.  Activation of Kv7 (KCNQ) voltage-gated potassium channels by synthetic compounds. , 2008, Trends in pharmacological sciences.

[29]  T. Friedrich,et al.  Molecular Determinants of KCNQ (Kv7) K+ Channel Sensitivity to the Anticonvulsant Retigabine , 2005, The Journal of Neuroscience.

[30]  D. Strøbæk,et al.  KCNQ4 channel activation by BMS-204352 and retigabine , 2001, Neuropharmacology.

[31]  K Lawson,et al.  Modulation of potassium channels as a therapeutic approach. , 2006, Current pharmaceutical design.