A New Class of Bayesian Cyclic Bounds for Periodic Parameter Estimation

Many practical signal processing applications involve estimation of parameters with periodic nature, such as phase, frequency and direction-of-arrival estimation. The commonly used mean-squared-error (MSE) risk does not take periodicity into account and thus, is inappropriate for periodic parameter estimation in which one is interested in the modulo- T error rather than the plain error value. As a result, MSE lower bounds are not valid for periodic estimation. In addition, conventional Bayesian MSE lower bounds, such as the Bayesian Cramér-Rao bound (BCRB) and the Bobrovsky-Zakai bound (BZB) require restrictive regularity conditions and usually do not exist in periodic settings. An alternative risk, which is commonly used in periodic parameter estimation problems, is the mean-cyclic-error (MCE). In this paper, we establish a new class of Bayesian lower bounds on the MCE of any estimator. The new class includes cyclic versions of the BCRB and the BZB that have less restrictive regularity conditions than those of the conventional BCRB and BZB, respectively. The tightest bound in the proposed class is derived and its tightness is discussed. In addition, the proposed class is extended to mixed vector parameter estimation with both periodic and nonperiodic parameters. The new cyclic lower bounds are compared with the MCE performance of the minimum MCE and maximum a-posteriori probability estimators for von-Mises parameter estimation and for frequency estimation.

[1]  Jacob Ziv,et al.  Some lower bounds on signal parameter estimation , 1969, IEEE Trans. Inf. Theory.

[2]  S. R. Jammalamadaka,et al.  Topics in Circular Statistics , 2001 .

[3]  I. Vaughan L. Clarkson,et al.  Carrier Phase and Amplitude Estimation for Phase Shift Keying Using Pilots and Data , 2013, IEEE Transactions on Signal Processing.

[4]  Brian C. Lovell,et al.  The circular nature of discrete-time frequency estimates , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[5]  Tariq S. Durrani,et al.  Frequency estimation in the presence of Doppler spread: performance analysis , 2001, IEEE Trans. Signal Process..

[6]  Ben-Zion Bobrovsky,et al.  A lower bound on the estimation error for certain diffusion processes , 1976, IEEE Trans. Inf. Theory.

[7]  Joseph Tabrikian,et al.  Bayesian Parameter Estimation Using Periodic Cost Functions , 2012, IEEE Transactions on Signal Processing.

[8]  I. Vaughan L. Clarkson,et al.  Analysis of the variance threshold of Kay's weighted linear predictor frequency estimator , 1994, IEEE Trans. Signal Process..

[9]  Pascal Larzabal,et al.  SNR threshold indicator in data-aided frequency synchronization , 2004, IEEE Signal Processing Letters.

[10]  Benjamin Friedlander,et al.  DOA estimation in multipath: an approach using fourth-order cumulants , 1997, IEEE Trans. Signal Process..

[11]  Brian M. Sadler,et al.  Performance of Doppler estimation for acoustic sources with atmospheric scattering , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[12]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[13]  I. Vaughan L. Clarkson,et al.  Polynomial Phase Estimation by Least Squares Phase Unwrapping , 2014, IEEE Trans. Signal Process..

[14]  K. Mardia Statistics of Directional Data , 1972 .

[15]  Philippe Forster,et al.  A Fresh Look at the Bayesian Bounds of the Weiss-Weinstein Family , 2008, IEEE Transactions on Signal Processing.

[16]  I. Introductiok Estimation for Rotational Processes with One Degree of Freedom-Part I1 : Discrete-Time Processes , 1975 .

[17]  R. S. Bucy,et al.  An Optimal Phase Demodulator , 1975 .

[18]  André Pollok,et al.  On the Cramér-Rao bound for polynomial phase signals , 2014, Signal Process..

[19]  Joseph Tabrikian,et al.  Cyclic Barankin-Type Bounds for Non-Bayesian Periodic Parameter Estimation , 2014, IEEE Transactions on Signal Processing.

[20]  I. Vaughan L. Clarkson,et al.  Direction Estimation by Minimum Squared Arc Length , 2012, IEEE Transactions on Signal Processing.

[21]  Gerhard Kurz,et al.  Recursive nonlinear filtering for angular data based on circular distributions , 2013, 2013 American Control Conference.

[22]  Don H. Johnson,et al.  Statistical Signal Processing , 2009, Encyclopedia of Biometrics.

[23]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[24]  Alexandre Renaux Weiss–Weinstein Bound for Data-Aided Carrier Estimation , 2007, IEEE Signal Processing Letters.

[25]  Marius Pesavento,et al.  Maximum-likelihood direction-of-arrival estimation in the presence of unknown nonuniform noise , 2001, IEEE Trans. Signal Process..

[26]  Alan S. Willsky,et al.  Fourier series and estimation on the circle with applications to synchronous communication-I: Analysis , 1974, IEEE Trans. Inf. Theory.

[27]  P. Ciblat,et al.  ZIV-ZAKAI bound for harmonic retrieval in multiplicative and additive gaussian noise , 2005, IEEE/SP 13th Workshop on Statistical Signal Processing, 2005.

[28]  Brian M. Sadler,et al.  Ziv–Zakai Bounds on Time Delay Estimation in Unknown Convolutive Random Channels , 2010, IEEE Transactions on Signal Processing.

[29]  Thomas Hotz,et al.  Extrinsic vs Intrinsic Means on the Circle , 2013, GSI.

[30]  Robert Boorstyn,et al.  Single tone parameter estimation from discrete-time observations , 1974, IEEE Trans. Inf. Theory.

[31]  Joseph Tabrikian,et al.  Bayesian cyclic bounds for periodic parameter estimation , 2013, 2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[32]  Barry G. Quinn,et al.  The Estimation and Tracking of Frequency , 2001 .

[33]  Hagit Messer,et al.  A Barankin-type lower bound on the estimation error of a hybrid parameter vector , 1997, IEEE Trans. Inf. Theory.

[34]  Yonina C. Eldar,et al.  A Lower Bound on the Bayesian MSE Based on the Optimal Bias Function , 2008, IEEE Transactions on Information Theory.

[35]  Joseph Tabrikian,et al.  A General Class of Outage Error Probability Lower Bounds in Bayesian Parameter Estimation , 2012, IEEE Transactions on Signal Processing.

[36]  J. Krolik,et al.  Theoretical performance limits on tropospheric refractivity estimation using point-to-point microwave measurements , 1999 .

[37]  Yoram Bresler,et al.  A global lower bound on parameter estimation error with periodic distortion functions , 2000, IEEE Trans. Inf. Theory.

[38]  Steven Kay,et al.  Unbiased estimation of the phase of a sinusoid , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[39]  Joseph Tabrikian,et al.  Non-Bayesian Periodic Cramér-Rao Bound , 2013, IEEE Transactions on Signal Processing.

[40]  M. Zakai,et al.  Some Classes of Global Cramer-Rao Bounds , 1987 .

[41]  Boaz Porat,et al.  The Cramer-Rao lower bound for signals with constant amplitude and polynomial phase , 1991, IEEE Trans. Signal Process..

[42]  Ehud Weinstein,et al.  A general class of lower bounds in parameter estimation , 1988, IEEE Trans. Inf. Theory.

[43]  H. Vincent Poor,et al.  Estimating Directional Statistics Using Wavefield Modeling and Mixtures of von-Mises Distributions , 2014, IEEE Signal Processing Letters.

[44]  R. Gill,et al.  Applications of the van Trees inequality : a Bayesian Cramr-Rao bound , 1995 .

[45]  Daniel W. Bliss,et al.  Mean-Squared-Error Prediction for Bayesian Direction-of-Arrival Estimation , 2013, IEEE Transactions on Signal Processing.

[46]  Ananthram Swami,et al.  Cramer-Rao bounds and maximum likelihood estimation for random amplitude phase-modulated signals , 1999, IEEE Trans. Signal Process..

[47]  Dharmendra Lingaiah,et al.  The Estimation and Tracking of Frequency , 2004 .

[48]  Joseph M. Francos,et al.  Bounds for estimation of multicomponent signals with random amplitude and deterministic phase , 1995, IEEE Trans. Signal Process..

[49]  Joseph Tabrikian,et al.  General Classes of Performance Lower Bounds for Parameter Estimation—Part II: Bayesian Bounds , 2010, IEEE Transactions on Information Theory.

[50]  Joseph Tabrikian,et al.  On the limitations of Barankin type bounds for MLE threshold prediction , 2015, Signal Process..

[51]  Georgios B. Giannakis,et al.  Harmonics in Gaussian multiplicative and additive noise: Cramer-Rao bounds , 1995, IEEE Trans. Signal Process..

[52]  Yossef Steinberg,et al.  Extended Ziv-Zakai lower bound for vector parameter estimation , 1997, IEEE Trans. Inf. Theory.

[53]  I. Vaughan L. Clarkson,et al.  Frequency Estimation by Phase Unwrapping , 2010, IEEE Transactions on Signal Processing.

[54]  S. Lang Complex Analysis , 1977 .

[55]  Edward J. Wegman,et al.  Statistical Signal Processing , 1985 .

[56]  A. Willsky,et al.  Estimation for Rotational Processes with One Degree of Freedom , 1972 .

[57]  Ruggero Reggiannini,et al.  A fundamental lower bound to the performance of phase estimators over Rician-fading channels , 1997, IEEE Trans. Commun..

[58]  H. V. Trees,et al.  Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking , 2007 .