A New Class of Bayesian Cyclic Bounds for Periodic Parameter Estimation
暂无分享,去创建一个
[1] Jacob Ziv,et al. Some lower bounds on signal parameter estimation , 1969, IEEE Trans. Inf. Theory.
[2] S. R. Jammalamadaka,et al. Topics in Circular Statistics , 2001 .
[3] I. Vaughan L. Clarkson,et al. Carrier Phase and Amplitude Estimation for Phase Shift Keying Using Pilots and Data , 2013, IEEE Transactions on Signal Processing.
[4] Brian C. Lovell,et al. The circular nature of discrete-time frequency estimates , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.
[5] Tariq S. Durrani,et al. Frequency estimation in the presence of Doppler spread: performance analysis , 2001, IEEE Trans. Signal Process..
[6] Ben-Zion Bobrovsky,et al. A lower bound on the estimation error for certain diffusion processes , 1976, IEEE Trans. Inf. Theory.
[7] Joseph Tabrikian,et al. Bayesian Parameter Estimation Using Periodic Cost Functions , 2012, IEEE Transactions on Signal Processing.
[8] I. Vaughan L. Clarkson,et al. Analysis of the variance threshold of Kay's weighted linear predictor frequency estimator , 1994, IEEE Trans. Signal Process..
[9] Pascal Larzabal,et al. SNR threshold indicator in data-aided frequency synchronization , 2004, IEEE Signal Processing Letters.
[10] Benjamin Friedlander,et al. DOA estimation in multipath: an approach using fourth-order cumulants , 1997, IEEE Trans. Signal Process..
[11] Brian M. Sadler,et al. Performance of Doppler estimation for acoustic sources with atmospheric scattering , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.
[12] Feller William,et al. An Introduction To Probability Theory And Its Applications , 1950 .
[13] I. Vaughan L. Clarkson,et al. Polynomial Phase Estimation by Least Squares Phase Unwrapping , 2014, IEEE Trans. Signal Process..
[14] K. Mardia. Statistics of Directional Data , 1972 .
[15] Philippe Forster,et al. A Fresh Look at the Bayesian Bounds of the Weiss-Weinstein Family , 2008, IEEE Transactions on Signal Processing.
[16] I. Introductiok. Estimation for Rotational Processes with One Degree of Freedom-Part I1 : Discrete-Time Processes , 1975 .
[17] R. S. Bucy,et al. An Optimal Phase Demodulator , 1975 .
[18] André Pollok,et al. On the Cramér-Rao bound for polynomial phase signals , 2014, Signal Process..
[19] Joseph Tabrikian,et al. Cyclic Barankin-Type Bounds for Non-Bayesian Periodic Parameter Estimation , 2014, IEEE Transactions on Signal Processing.
[20] I. Vaughan L. Clarkson,et al. Direction Estimation by Minimum Squared Arc Length , 2012, IEEE Transactions on Signal Processing.
[21] Gerhard Kurz,et al. Recursive nonlinear filtering for angular data based on circular distributions , 2013, 2013 American Control Conference.
[22] Don H. Johnson,et al. Statistical Signal Processing , 2009, Encyclopedia of Biometrics.
[23] William Feller,et al. An Introduction to Probability Theory and Its Applications , 1967 .
[24] Alexandre Renaux. Weiss–Weinstein Bound for Data-Aided Carrier Estimation , 2007, IEEE Signal Processing Letters.
[25] Marius Pesavento,et al. Maximum-likelihood direction-of-arrival estimation in the presence of unknown nonuniform noise , 2001, IEEE Trans. Signal Process..
[26] Alan S. Willsky,et al. Fourier series and estimation on the circle with applications to synchronous communication-I: Analysis , 1974, IEEE Trans. Inf. Theory.
[27] P. Ciblat,et al. ZIV-ZAKAI bound for harmonic retrieval in multiplicative and additive gaussian noise , 2005, IEEE/SP 13th Workshop on Statistical Signal Processing, 2005.
[28] Brian M. Sadler,et al. Ziv–Zakai Bounds on Time Delay Estimation in Unknown Convolutive Random Channels , 2010, IEEE Transactions on Signal Processing.
[29] Thomas Hotz,et al. Extrinsic vs Intrinsic Means on the Circle , 2013, GSI.
[30] Robert Boorstyn,et al. Single tone parameter estimation from discrete-time observations , 1974, IEEE Trans. Inf. Theory.
[31] Joseph Tabrikian,et al. Bayesian cyclic bounds for periodic parameter estimation , 2013, 2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).
[32] Barry G. Quinn,et al. The Estimation and Tracking of Frequency , 2001 .
[33] Hagit Messer,et al. A Barankin-type lower bound on the estimation error of a hybrid parameter vector , 1997, IEEE Trans. Inf. Theory.
[34] Yonina C. Eldar,et al. A Lower Bound on the Bayesian MSE Based on the Optimal Bias Function , 2008, IEEE Transactions on Information Theory.
[35] Joseph Tabrikian,et al. A General Class of Outage Error Probability Lower Bounds in Bayesian Parameter Estimation , 2012, IEEE Transactions on Signal Processing.
[36] J. Krolik,et al. Theoretical performance limits on tropospheric refractivity estimation using point-to-point microwave measurements , 1999 .
[37] Yoram Bresler,et al. A global lower bound on parameter estimation error with periodic distortion functions , 2000, IEEE Trans. Inf. Theory.
[38] Steven Kay,et al. Unbiased estimation of the phase of a sinusoid , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.
[39] Joseph Tabrikian,et al. Non-Bayesian Periodic Cramér-Rao Bound , 2013, IEEE Transactions on Signal Processing.
[40] M. Zakai,et al. Some Classes of Global Cramer-Rao Bounds , 1987 .
[41] Boaz Porat,et al. The Cramer-Rao lower bound for signals with constant amplitude and polynomial phase , 1991, IEEE Trans. Signal Process..
[42] Ehud Weinstein,et al. A general class of lower bounds in parameter estimation , 1988, IEEE Trans. Inf. Theory.
[43] H. Vincent Poor,et al. Estimating Directional Statistics Using Wavefield Modeling and Mixtures of von-Mises Distributions , 2014, IEEE Signal Processing Letters.
[44] R. Gill,et al. Applications of the van Trees inequality : a Bayesian Cramr-Rao bound , 1995 .
[45] Daniel W. Bliss,et al. Mean-Squared-Error Prediction for Bayesian Direction-of-Arrival Estimation , 2013, IEEE Transactions on Signal Processing.
[46] Ananthram Swami,et al. Cramer-Rao bounds and maximum likelihood estimation for random amplitude phase-modulated signals , 1999, IEEE Trans. Signal Process..
[47] Dharmendra Lingaiah,et al. The Estimation and Tracking of Frequency , 2004 .
[48] Joseph M. Francos,et al. Bounds for estimation of multicomponent signals with random amplitude and deterministic phase , 1995, IEEE Trans. Signal Process..
[49] Joseph Tabrikian,et al. General Classes of Performance Lower Bounds for Parameter Estimation—Part II: Bayesian Bounds , 2010, IEEE Transactions on Information Theory.
[50] Joseph Tabrikian,et al. On the limitations of Barankin type bounds for MLE threshold prediction , 2015, Signal Process..
[51] Georgios B. Giannakis,et al. Harmonics in Gaussian multiplicative and additive noise: Cramer-Rao bounds , 1995, IEEE Trans. Signal Process..
[52] Yossef Steinberg,et al. Extended Ziv-Zakai lower bound for vector parameter estimation , 1997, IEEE Trans. Inf. Theory.
[53] I. Vaughan L. Clarkson,et al. Frequency Estimation by Phase Unwrapping , 2010, IEEE Transactions on Signal Processing.
[54] S. Lang. Complex Analysis , 1977 .
[55] Edward J. Wegman,et al. Statistical Signal Processing , 1985 .
[56] A. Willsky,et al. Estimation for Rotational Processes with One Degree of Freedom , 1972 .
[57] Ruggero Reggiannini,et al. A fundamental lower bound to the performance of phase estimators over Rician-fading channels , 1997, IEEE Trans. Commun..
[58] H. V. Trees,et al. Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking , 2007 .