CAPath: 3D-Printed Interfaces with Conductive Points in Grid Layout to Extend Capacitive Touch Inputs

We propose a 3D-printed interface, CAPath, in which conductive contact points are in a grid layout. This structure allows not only specific inputs (e.g., scrolling or pinching) but also general 2D inputs and gestures that fully leverage the "touch surface." We provide the requirements to fabricate the interface and implement a designing system to generate 3D objects in the conductive grid structure. The CAPath interface can be utilized in the uniquely shaped interfaces and opens up further application fields that cannot currently be accessed with existing passive touch extensions. Our contributions also include an evaluation for the recognition accuracy of the touch operations with the implemented interfaces. The results show that our technique is promising to fabricate customizable touch-sensitive interactive objects.

[1]  Collin Mulliner,et al.  Android Hacker's Handbook , 2014 .

[2]  Stefanie Müller,et al.  CapStones and ZebraWidgets: sensing stacks of building blocks, dials and sliders on capacitive touch screens , 2012, CHI.

[3]  Yvonne Rogers,et al.  Fat Finger Worries: How Older and Younger Users Physically Interact with PDAs , 2005, INTERACT.

[4]  Homei Miyashita,et al.  ExtensionSticker: A Proposal for a Striped Pattern Sticker to Extend Touch Interfaces and its Assessment , 2015, CHI.

[5]  Björn Hartmann,et al.  A series of tubes: adding interactivity to 3D prints using internal pipes , 2014, UIST.

[6]  Yoshihiro Kawahara,et al.  LightTouch: Passive Gadgets for Extending Interactions on Capacitive Touchscreens by Automating Touch Inputs , 2020, UIST.

[7]  Scott E. Hudson,et al.  An Architecture for Generating Interactive Feedback in Probabilistic User Interfaces , 2015, CHI.

[8]  Rhys Jones,et al.  RepRap – the replicating rapid prototyper , 2011, Robotica.

[9]  Mike Y. Chen,et al.  Clip-on gadgets: expanding multi-touch interaction area with unpowered tactile controls , 2011, UIST '11.

[10]  Andreas Butz,et al.  Sketch-a-TUI: low cost prototyping of tangible interactions using cardboard and conductive ink , 2012, Tangible and Embedded Interaction.

[11]  Timo Götzelmann,et al.  CapCodes: Capacitive 3D Printable Identification and On-screen Tracking for Tangible Interaction , 2016, NordiCHI.

[12]  Martin Schmitz,et al.  Capricate: A Fabrication Pipeline to Design and 3D Print Capacitive Touch Sensors for Interactive Objects , 2015, UIST.

[13]  Florian Alt,et al.  ProbUI: Generalising Touch Target Representations to Enable Declarative Gesture Definition for Probabilistic GUIs , 2017, CHI.

[14]  Sebastian Günther,et al.  Off-Line Sensing: Memorizing Interactions in Passive 3D-Printed Objects , 2018, CHI.

[15]  Pierre Dragicevic,et al.  Tangible remote controllers for wall-size displays , 2012, CHI.

[16]  Niels Henze,et al.  InfiniTouch: Finger-Aware Interaction on Fully Touch Sensitive Smartphones , 2018, UIST.

[17]  Jan O. Borchers,et al.  Transporters: Vision & Touch Transitive Widgets for Capacitive Screens , 2015, CHI Extended Abstracts.

[18]  Li-Wei Chan,et al.  TUIC: enabling tangible interaction on capacitive multi-touch displays , 2011, CHI.

[19]  Björn Hartmann,et al.  Midas: fabricating custom capacitive touch sensors to prototype interactive objects , 2012, UIST '12.

[20]  Homei Miyashita,et al.  A Tangible Interface to Realize Touch Operations on the Face of a Physical Object , 2016, UIST.

[21]  Matthew S. Reynolds,et al.  Finding Common Ground: A Survey of Capacitive Sensing in Human-Computer Interaction , 2017, CHI.

[22]  Itiro Siio,et al.  Ohmic-Sticker: Force-to-Motion Type Input Device that Extends Capacitive Touch Surface , 2019, UIST.

[23]  Martin Schmitz,et al.  Flexibles: Deformation-Aware 3D-Printed Tangibles for Capacitive Touchscreens , 2017, CHI.

[24]  Yuanchun Shi,et al.  FlexTouch: Enabling Large-Scale Interaction Sensing Beyond Touchscreens Using Flexible and Conductive Materials , 2019, Proc. ACM Interact. Mob. Wearable Ubiquitous Technol..

[25]  Tung D. Ta,et al.  Interconnection and double layer for flexible electronic circuit with instant inkjet circuits , 2015, UbiComp.

[26]  Xiang 'Anthony' Chen,et al.  The fat thumb: using the thumb's contact size for single-handed mobile interaction , 2012, Mobile HCI.

[27]  Sebastian Günther,et al.  BYO*: Utilizing 3D Printed Tangible Tools for Interaction on Interactive Surfaces , 2017, SmartObject@IUI.

[28]  Shota Yamanaka,et al.  ScraTouch: Extending Touch Interaction Technique Using Fingernail on Capacitive Touch Surfaces , 2020, CHI Extended Abstracts.

[29]  Itiro Siio,et al.  Ohmic-Touch: Extending Touch Interaction by Indirect Touch through Resistive Objects , 2018, CHI.

[30]  Itiro Siio,et al.  Anamorphicons: an Extended Display Utilizing a Cylindrical Mirror Widget , 2017, OZCHI.

[31]  Shuo Wang,et al.  Investigating the interference of common mode noises of AC/DC power adapters to the touchscreens of consumer electronics , 2017, 2017 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI).

[32]  Michael Rohs,et al.  CapWidgets: tangile widgets versus multi-touch controls on mobile devices , 2011, CHI Extended Abstracts.

[33]  Yuichi Itoh,et al.  PUCs: detecting transparent, passive untouched capacitive widgets on unmodified multi-touch displays , 2013, ITS.

[34]  Koji Tsukada,et al.  CapacitiveMarker: novel interaction method using visual marker integrated with conductive pattern , 2015, AH.