Effect of pulse temporal shape on optical trapping and impulse transfer using ultrashort pulsed lasers.

We investigate the effects of pulse duration on optical trapping with high repetition rate ultrashort pulsed lasers, through Lorentz-Mie theory, numerical simulation, and experiment. Optical trapping experiments use a 12 femtosecond duration infrared pulsed laser, with the trapping microscope's temporal dispersive effects measured and corrected using the Multiphoton Intrapulse Interference Phase Scan method. We apply pulse shaping to reproducibly stretch pulse duration by 1.5 orders of magnitude and find no material-independent effects of pulse temporal profile on optical trapping of 780nm silica particles, in agreement with our theory and simulation. Using pulse shaping, we control two-photon fluorescence in trapped fluorescent particles, opening the door to other coherent control applications with trapped particles.

[1]  Sjoerd Stallinga,et al.  Radiation force on a Fabry-Perot slab immersed in a dielectric. , 2006, Optics Express.

[2]  A. A. de Thomaz,et al.  Raman, hyper-Raman, hyper-Rayleigh, two-photon luminescence and morphology-dependent resonance modes in a single optical tweezers system. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Marcos Dantus,et al.  MIIPS characterizes and corrects femtosecond pulses , 2007 .

[4]  Kishan Dholakia,et al.  Near-field optical trapping with an ultrashort pulsed laser beam , 2008 .

[5]  Marcos Dantus,et al.  Group-velocity dispersion measurements of water, seawater, and ocular components using multiphoton intrapulse interference phase scan. , 2007, Applied optics.

[6]  Min Gu,et al.  Scanning particle trapped optical microscopy based on two-photon-induced morphology-dependent resonance in a trapped microsphere , 2006 .

[7]  S. Barnett,et al.  Theory of the radiation pressure on dielectric slabs, prisms and single surfaces. , 2006, Optics express.

[8]  Atsushi Ishikawa,et al.  Detection of optical trapping of CdTe quantum dots by two-photon-induced luminescence , 2007 .

[9]  Janelle Shane,et al.  Selective nonlinear optical excitation with pulses shaped by pseudorandom Galois fields , 2006 .

[10]  Marcos Dantus,et al.  Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation. , 2004, Optics letters.

[11]  Marcos Dantus,et al.  Use of coherent control methods through scattering biological tissue to achieve functional imaging. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[12]  James P. Gordon,et al.  Radiation Forces and Momenta in Dielectric Media , 1973 .

[13]  Li-Gang Wang,et al.  Dynamic radiation force of a pulsed gaussian beam acting on rayleigh dielectric sphere. , 2007, Optics express.

[14]  H M Hertz,et al.  Second-harmonic generation in optically trapped nonlinear particles with pulsed lasers. , 1995, Applied optics.

[15]  Min Gu,et al.  Morphology-dependent resonance induced by two-photon excitation in a micro-sphere trapped by a femtosecond pulsed laser. , 2004, Optics express.

[16]  Hiroshi Masuhara,et al.  Three‐dimensional optical trapping and laser ablation of a single polymer latex particle in water , 1991 .

[17]  K. Svoboda,et al.  Biological applications of optical forces. , 1994, Annual review of biophysics and biomolecular structure.

[18]  Marcos Dantus,et al.  Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses , 2006 .

[19]  W Sibbett,et al.  Visualization of optical binding of microparticles using a femtosecond fiber optical trap. , 2006, Optics express.

[20]  Nancy R. Forde,et al.  Brownian motion in a modulated optical trap , 2007 .

[21]  Tadashi Itoh,et al.  Optical manipulation of CuCl nanoparticles under an excitonic resonance condition in superfluid helium , 2006 .

[22]  B Agate,et al.  Femtosecond optical tweezers for in-situ control of two-photon fluorescence. , 2004, Optics express.

[23]  H. Winhold,et al.  Optical trapping and coherent anti-Stokes Raman scattering (CARS) spectroscopy of submicron-size particles , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[24]  Iver Brevik,et al.  Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor , 1979 .

[25]  Masud Mansuripur Radiation pressure and the linear momentum of the electromagnetic field. , 2004, Optics express.

[26]  Debabrata Goswami,et al.  Stable optical trapping of latex nanoparticles with ultrashort pulsed illumination. , 2009, Applied optics.

[27]  Andrew C. Richardson,et al.  Three-dimensional optical control of individual quantum dots. , 2008, Nano letters.

[28]  Kishan Dholakia,et al.  Imaging in optical micromanipulation using two-photon excitation , 2004 .

[29]  Yaron Silberberg,et al.  Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy , 2002, Nature.

[30]  Yu-zhu Wang,et al.  Numerical modeling of optical levitation and trapping of the "stuck" particles with a pulsed optical tweezers. , 2005, Optics express.

[31]  Kishan Dholakia,et al.  Optical manipulation of nanoparticles: a review , 2008 .

[32]  Yong-qing Li,et al.  Optical levitation and manipulation of stuck particles with pulsed optical tweezers. , 2005, Optics letters.

[33]  Kishan Dholakia,et al.  Optical Trapping Takes Shape: The Use of Structured Light Fields , 2008 .

[34]  C. Schmidt,et al.  Interference model for back-focal-plane displacement detection in optical tweezers. , 1998, Optics letters.

[35]  Kishan Dholakia,et al.  Optical trapping using ultrashort 12.9fs pulses , 2008, NanoScience + Engineering.