Large Deflection Analysis of a Thin Plate: Computer Simulations and Experiments
暂无分享,去创建一个
Jeong-Hyun Sohn | Wan-Suk Yoo | Su-Jin Park | Jeong-Han Lee | Oleg Dmitrochenko | Dmitry Pogorelov | W. Yoo | J. Sohn | D. Pogorelov | Su-Jin Park | Jeong-Han Lee | O. Dmitrochenko
[1] S. Timoshenko,et al. THEORY OF PLATES AND SHELLS , 1959 .
[2] A. Shabana,et al. DEVELOPMENT OF SIMPLE MODELS FOR THE ELASTIC FORCES IN THE ABSOLUTE NODAL CO-ORDINATE FORMULATION , 2000 .
[3] Nobuyuki Shimizu,et al. W-1-1-4 INTRODUCTION OF DAMPING MATRIX INTO ABSOLUTE NODAL COORDINATE FORMULATION , 2002 .
[4] Jeong-Hyun Sohn,et al. Large Oscillations of a Thin Cantilever Beam: Physical Experiments and Simulation Using the Absolute Nodal Coordinate Formulation , 2003 .
[5] J. Z. Zhu,et al. The finite element method , 1977 .
[6] Mohamed A. Omar,et al. A TWO-DIMENSIONAL SHEAR DEFORMABLE BEAM FOR LARGE ROTATION AND DEFORMATION PROBLEMS , 2001 .
[7] Richard Schwertassek,et al. Flexible Bodies in Multibody Systems , 1998 .
[8] D. Pogorelov,et al. Differential–algebraic equations in multibody system modeling , 1998, Numerical Algorithms.
[9] R. Y. Yakoub,et al. Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Theory , 2001 .
[10] Ahmed A. Shabana,et al. Dynamics of Multibody Systems , 2020 .
[11] Ahmed A. Shabana,et al. Flexible Multibody Dynamics: Review of Past and Recent Developments , 1997 .
[12] K. Bathe. Finite Element Procedures , 1995 .
[13] Dmitry Pogorelov,et al. Some Developments in Computational Techniques in Modeling Advanced Mechanical Systems , 1997 .
[14] A. Shabana,et al. A new plate element based on the absolute nodal coordinate formulation , 2001 .
[15] H. Saunders,et al. Literature Review : Books: THEORY AND ANALYSIS OF PLATES -- C LASSICA L AND NUMERICAL METHODS Rudolph Szilard Prentice Hall, Inc., Englewood Cliffs, N.J. (1974) , 1974 .
[16] Oleg Dmitrochenko,et al. Generalization of Plate Finite Elements for Absolute Nodal Coordinate Formulation , 2003 .