A discrete calculus analysis of the Keller Box scheme and a generalization of the method to arbitrary meshes
暂无分享,去创建一个
[1] Peter Bradshaw,et al. Engineering Calculation Methods for Turbulent Flow , 1981 .
[2] F. Harlow,et al. Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .
[3] S. Reich,et al. Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity , 2001 .
[4] Mikhail Shashkov,et al. Solving Diffusion Equations with Rough Coefficients in Rough Grids , 1996 .
[5] M. Shashkov,et al. The Orthogonal Decomposition Theorems for Mimetic Finite Difference Methods , 1999 .
[6] J. Blair Perot,et al. Discrete calculus methods for diffusion , 2007, J. Comput. Phys..
[7] James M. Hyman,et al. The convergence of mimetic discretization for rough grids , 2004 .
[8] Jean-Pierre Croisille,et al. Finite volume box schemes on triangular meshes , 1998 .
[9] Jean-Pierre Croisille,et al. Finite Volume Box Schemes and Mixed Methods , 2000 .
[10] R. Nicolaides,et al. Covolume Solutions of Three-Dimensional Div-Curl Equations , 1997 .
[11] Stanly Steinberg,et al. The Accuracy of Numerical Models for Continuum Problems , 1999 .
[12] J. Nédélec. Mixed finite elements in ℝ3 , 1980 .
[13] J. Blair Perot,et al. Higher-order mimetic methods for unstructured meshes , 2006, J. Comput. Phys..
[14] Anil N. Hirani,et al. Discrete exterior calculus , 2005, math/0508341.
[15] Jean-Jacques Chattot. A conservative box-scheme for the Euler equations , 1999 .
[16] Peter Bradshaw,et al. Solution of a hyperbolic system of turbulence-model equations by the “box” scheme , 1980 .
[17] H. B. Keller. A New Difference Scheme for Parabolic Problems , 1971 .
[18] R. A. Nicolaides,et al. A higher‐order covolume method for planar div–curl problems , 1999 .
[19] Jim E. Morel,et al. A cell-centered lagrangian-mesh diffusion differencing scheme , 1992 .
[20] J. Cavendish,et al. A complementary volume approach for modelling three‐dimensional Navier—Stokes equations using dual delaunay/voronoi tessellations , 1994 .
[21] J.-P. Croisille,et al. Keller's Box-Scheme for the One-Dimensional Stationary Convection-Diffusion Equation , 2002, Computing.
[22] Jason Frank,et al. Linear PDEs and Numerical Methods That Preserve a Multisymplectic Conservation Law , 2006, SIAM J. Sci. Comput..
[23] Stephen F. Wornom,et al. Calculation of quasi-one-dimensional flows with shocks , 1986 .
[24] Graham F. Carey,et al. Higher-order compact mixed methods , 1997 .
[25] Jean-Pierre Croisille,et al. An efficient box-scheme for convection–diffusion equations with sharp contrast in the diffusion coefficients , 2005 .
[26] G. Hedstrom,et al. Numerical Solution of Partial Differential Equations , 1966 .