Chemisorption and Regeneration of Amine-based CO2 Sorbents in Direct Air Capture

[1]  A. SenGupta,et al.  Direct air capture (DAC) and sequestration of CO2: Dramatic effect of coordinated Cu(II) onto a chelating weak base ion exchanger , 2023, Science advances.

[2]  X. Tan,et al.  Direct capture of low concentration CO2 using tetraethylenepentamine-grafted polyacrylonitrile hollow fibers , 2022, Separation and Purification Technology.

[3]  M. Ozkan,et al.  Progress in carbon dioxide capture materials for deep decarbonization , 2022, Chem.

[4]  Jiewen Xiao,et al.  Defect-rich Mg-Al MMOs supported TEPA with enhanced charge transfer for highly efficient and stable direct air capture , 2021, Journal of Energy Chemistry.

[5]  L. Qi,et al.  Role of Brush-like Additives in CO2 Adsorbents for the Enhancement of Amine Efficiency , 2021, Journal of Environmental Chemical Engineering.

[6]  Jennifer A. Rudd,et al.  The application of amine-based materials for carbon capture and utilisation: an overarching view , 2021, Materials Advances.

[7]  Alexander C. Forse,et al.  Overcoming Metastable CO2 Adsorption in a Bulky Diamine-Appended Metal-Organic Framework. , 2021, Journal of the American Chemical Society.

[8]  Jia Li,et al.  Operating temperatures affect direct air capture of CO2 in polyamine-loaded mesoporous silica , 2021 .

[9]  Ruzhu Wang,et al.  Modified layered double hydroxides for efficient and reversible carbon dioxide capture from air , 2021, Cell Reports Physical Science.

[10]  A. Sayari,et al.  Understanding the Effect of Water on CO2 Adsorption. , 2021, Chemical reviews.

[11]  Jianguo Mi,et al.  A Highly Efficient and Stable Composite of Polyacrylate and Metal-Organic Framework Prepared by Interface Engineering for Direct Air Capture. , 2021, ACS applied materials & interfaces.

[12]  Soojin Park,et al.  Chemically modified carbonaceous adsorbents for enhanced CO2 capture: A review , 2021 .

[13]  A. Park,et al.  Solvent Impregnated Polymers Loaded with Liquid‐Like Nanoparticle Organic Hybrid Materials for Enhanced Kinetics of Direct Air Capture and Point Source CO2 Capture , 2021, Advanced Functional Materials.

[14]  Ruzhu Wang,et al.  Design of steam-assisted temperature vacuum-swing adsorption processes for efficient CO2 capture from ambient air , 2021 .

[15]  Christopher W. Jones,et al.  Drastic Enhancement of Carbon Dioxide Adsorption in Fluoroalkyl-Modified Poly(allylamine) , 2021, Journal of Materials Chemistry A.

[16]  Chunshan Song,et al.  pH swing adsorption process for ambient carbon dioxide capture using activated carbon black adsorbents and immobilized carbonic anhydrase biocatalysts , 2020 .

[17]  A. Hicks,et al.  Assessing the environmental impact and payback of carbon nanotube supported CO2 capture technologies using LCA methodology , 2020 .

[18]  Hsin‐Tsung Chen,et al.  Charge-regulated, electric-field and combined effect controlled switchable CO2 capture and separation on penta-C2N nanosheet: A computational study , 2020 .

[19]  P. Patel,et al.  Food–energy–water implications of negative emissions technologies in a +1.5 °C future , 2020, Nature Climate Change.

[20]  K. Lackner,et al.  Moisture-Driven CO2 Sorbents , 2020 .

[21]  Ruzhu Wang,et al.  Efficient CO2capture from ambient air with amine-functionalized Mg–Al mixed metal oxides , 2020 .

[22]  Christopher W. Jones,et al.  Effect of Extended Aging and Oxidation on Linear Poly(propylenimine)-Mesoporous Silica Composites for CO2 Capture from Simulated Air and Flue Gas Streams. , 2020, ACS applied materials & interfaces.

[23]  Christopher W. Jones,et al.  Alkyl-Aryl Amine-Rich Molecules for CO2 Removal via Direct Air Capture , 2020 .

[24]  Gang Yu,et al.  Efficient removal of CO2 from indoor air using a polyethyleneimine-impregnated resin and its low-temperature regeneration , 2020 .

[25]  K. Lackner,et al.  Sorbents for Direct Capture of CO2 from Ambient Air. , 2020, Angewandte Chemie.

[26]  J. Malinowski,et al.  Effect of support structure and polyamine type on CO2 capture in hierarchically structured monolithic sorbents , 2020 .

[27]  F. Tezel,et al.  Direct Dry Air Capture of CO2 Using VTSA with Faujasite Zeolites , 2020 .

[28]  D. Agar,et al.  Investigation of water co-adsorption on the energy balance of solid sorbent based direct air capture processes , 2020 .

[29]  E. Hawkins,et al.  Observed Emergence of the Climate Change Signal: From the Familiar to the Unknown , 2019, Geophysical Research Letters.

[30]  E. S. Sanz-Pérez,et al.  Hybrid amine-silica materials: Determination of N content by 29Si NMR and application to direct CO2 capture from air , 2019, Chemical Engineering Journal.

[31]  Peter Viebahn,et al.  The Potential Role of Direct Air Capture in the German Energy Research Program—Results of a Multi-Dimensional Analysis , 2019, Energies.

[32]  Christopher W. Jones,et al.  Self-supported branched poly(ethyleneimine) materials for CO2 adsorption from simulated flue gas , 2019, Journal of Materials Chemistry A.

[33]  David W. Agar,et al.  Simulation and optimization of a novel moving belt adsorber concept for the direct air capture of carbon dioxide , 2019, Comput. Chem. Eng..

[34]  Christian Breyer,et al.  Techno-economic assessment of CO2 direct air capture plants , 2019, Journal of Cleaner Production.

[35]  Christopher W. Jones,et al.  Aminopolymer-Impregnated Hierarchical Silica Structures: Unexpected Equivalent CO2 Uptake under Simulated Air Capture and Flue Gas Capture Conditions , 2019, Chemistry of Materials.

[36]  Masoud Jahandar Lashaki,et al.  Stability of amine-functionalized CO2 adsorbents: a multifaceted puzzle. , 2019, Chemical Society reviews.

[37]  A. Goeppert,et al.  Oxidation-Resistant, Cost-Effective Epoxide-Modified Polyamine Adsorbents for CO2 Capture from Various Sources Including Air. , 2019, ChemSusChem.

[38]  Division on Earth,et al.  Negative Emissions Technologies and Reliable Sequestration , 2019 .

[39]  H. Kua,et al.  Effect of indoor contamination on carbon dioxide adsorption of wood-based biochar – Lessons for direct air capture , 2019, Journal of Cleaner Production.

[40]  A. Hoadley,et al.  CO2 Capture from Air Using Pelletized Polyethylenimine Impregnated MCF Silica , 2019, Industrial & Engineering Chemistry Research.

[41]  Hiroki Koizumi,et al.  CO2 capture by Mn(i) and Re(i) complexes with a deprotonated triethanolamine ligand , 2019, Chemical science.

[42]  Yanli Zhao,et al.  Trace Carbon Dioxide Capture by Metal–Organic Frameworks , 2018, ACS Sustainable Chemistry & Engineering.

[43]  B. Pejcic,et al.  Carbon capture with polyethylenimine hydrogel beads (PEI HBs) , 2018 .

[44]  M. Soukri,et al.  Phosphorous dendrimer bound polyethyleneimine as solid sorbents for post-combustion CO2 capture , 2018, Chemical Engineering Journal.

[45]  M. Zybert,et al.  Hyperbranched polyglycerols containing amine groups — Synthesis, characterization and carbon dioxide capture , 2018, Journal of CO2 Utilization.

[46]  Lizhong Yang,et al.  The Development and Validation of a Closed-Loop Experimental Setup for Investigating CO2 and H2O Coadsorption Kinetics under Conditions Relevant to Direct Air Capture , 2018, Industrial & Engineering Chemistry Research.

[47]  S. Ye,et al.  Kinetics and mechanism of low-concentration CO2 adsorption on solid amine in a humid confined space , 2018, The Canadian Journal of Chemical Engineering.

[48]  Ryan P. Lively,et al.  Oxidatively-Stable Linear Poly(propylenimine)-Containing Adsorbents for CO2 Capture from Ultradilute Streams. , 2018, ChemSusChem.

[49]  Manmilan Singh,et al.  Humidity-swing mechanism for CO2 capture from ambient air. , 2018, Chemical communications.

[50]  Arun Pal,et al.  A Moisture-Stable 3D Microporous CoII -Metal-Organic Framework with Potential for Highly Selective CO2 Separation under Ambient Conditions. , 2018, Chemistry.

[51]  Jung-Hyun Kim,et al.  Fully organic CO2 absorbent obtained by a Schiff base reaction between branched poly(ethyleneimine) and glutaraldehyde , 2018, Korean Journal of Chemical Engineering.

[52]  T. Sainio,et al.  Modelling of equilibrium working capacity of PSA, TSA and TVSA processes for CO2 adsorption under direct air capture conditions , 2017 .

[53]  E. Andreoli,et al.  CO2 Capture Partner Molecules in Highly Loaded PEI Sorbents , 2017 .

[54]  Zhengxiao Guo,et al.  Design of hyperporous graphene networks and their application in solid-amine based carbon capture systems , 2017 .

[55]  Woosung Choi,et al.  Macroporous Silica with Thick Framework for Steam-Stable and High-Performance Poly(ethyleneimine)/Silica CO2 Adsorbent. , 2017, ChemSusChem.

[56]  F. Rezaei,et al.  CO2 capture from air using amine functionalized kaolin-based zeolites , 2017 .

[57]  Ryan P. Lively,et al.  Design of Aminopolymer Structure to Enhance Performance and Stability of CO2 Sorbents: Poly(propylenimine) vs Poly(ethylenimine). , 2017, Journal of the American Chemical Society.

[58]  D. Brilman,et al.  Stability of a Benzyl Amine Based CO2 Capture Adsorbent in View of Regeneration Strategies , 2017, Industrial & engineering chemistry research.

[59]  Christopher W. Jones,et al.  Systems Design and Economic Analysis of Direct Air Capture of CO2 through Temperature Vacuum Swing Adsorption Using MIL-101(Cr)-PEI-800 and mmen-Mg2(dobpdc) MOF Adsorbents , 2017 .

[60]  Joel D. Kress,et al.  The Mechanism of CO2 Adsorption under Dry and Humid Conditions in Mesoporous Silica-Supported Amine Sorbents , 2016 .

[61]  J. Hansen,et al.  Young People's Burden: Requirement of Negative CO2 Emissions , 2016, 1609.05878.

[62]  Christopher W. Jones,et al.  Direct Capture of CO2 from Ambient Air. , 2016, Chemical reviews.

[63]  Zebao Rui,et al.  Putting an ultrahigh concentration of amine groups into a metal–organic framework for CO2 capture at low pressures , 2016, Chemical science.

[64]  Christopher W. Jones,et al.  Amine-Oxide Hybrid Materials for CO2 Capture from Ambient Air. , 2015, Accounts of chemical research.

[65]  Christopher W. Jones,et al.  Linking CO2 Sorption Performance to Polymer Morphology in Aminopolymer/Silica Composites through Neutron Scattering. , 2015, Journal of the American Chemical Society.

[66]  Jitong Wang,et al.  Direct Capture of Low-Concentration CO2 on Mesoporous Carbon-Supported Solid Amine Adsorbents at Ambient Temperature , 2015 .

[67]  Chunshan Song,et al.  New molecular basket sorbents for CO2 capture based on mesoporous sponge-like TUD-1 , 2014 .

[68]  Chunshan Song,et al.  New Strategy To Enhance CO2 Capture over a Nanoporous Polyethylenimine Sorbent , 2014 .

[69]  Xiaoxing Wang,et al.  Three-dimensional molecular basket sorbents for CO2 capture: Effects of pore structure of supports and loading level of polyethylenimine , 2014 .

[70]  S. Han,et al.  Diamine-functionalized metal-organic framework: Exceptionally high CO 2 capacities from ambient air and flue gas, ultrafast CO2 uptake rate, and adsorption mechanism , 2014 .

[71]  Aldo Steinfeld,et al.  Stability of amine-functionalized cellulose during temperature-vacuum-swing cycling for CO2 capture from air. , 2013, Environmental science & technology.

[72]  J. Silvestre-Albero,et al.  High selectivity of TiC-CDC for CO2/N2 separation , 2013 .

[73]  Gang Yu,et al.  Polyethylenimine-impregnated resin for high CO2 adsorption: an efficient adsorbent for CO2 capture from simulated flue gas and ambient air. , 2013, ACS applied materials & interfaces.

[74]  Antonio Benito Fuertes Arias,et al.  Assessment of the Role of Micropore Size and N-Doping in CO2 Capture by Porous Carbons , 2013 .

[75]  Tim A. Rappold,et al.  Carbon black functionalized with hyperbranched polymers: synthesis, characterization, and application in reversible CO2 capture , 2013 .

[76]  Christopher W. Jones,et al.  Oxidative Stability of Amino Polymer–Alumina Hybrid Adsorbents for Carbon Dioxide Capture , 2013 .

[77]  Rajamani Krishna,et al.  Carbon Dioxide Capture from Air Using Amine-Grafted Porous Polymer Networks , 2013 .

[78]  K. Lackner,et al.  Moisture-swing sorption for carbon dioxide capture from ambient air: a thermodynamic analysis. , 2013, Physical chemistry chemical physics : PCCP.

[79]  Christopher W. Jones,et al.  Role of amine structure on carbon dioxide adsorption from ultradilute gas streams such as ambient air. , 2012, ChemSusChem.

[80]  A. Sayari,et al.  CO2-induced degradation of amine-containing adsorbents: reaction products and pathways. , 2012, Journal of the American Chemical Society.

[81]  Philip G. Jessop,et al.  Support-Free Porous Polyamine Particles for CO2 Capture. , 2012, ACS macro letters.

[82]  George A. Olah,et al.  Air as the renewable carbon source of the future: an overview of CO2 capture from the atmosphere , 2012 .

[83]  Christopher W. Jones,et al.  Modification of the Mg/DOBDC MOF with Amines to Enhance CO2 Adsorption from Ultradilute Gases. , 2012, The journal of physical chemistry letters.

[84]  Jun Lin,et al.  Functionalized mesoporous silica materials for controlled drug delivery. , 2012, Chemical Society reviews.

[85]  A. Sayari,et al.  CO2 deactivation of supported amines: does the nature of amine matter? , 2012, Langmuir : the ACS journal of surfaces and colloids.

[86]  A. Samanta,et al.  Post-Combustion CO2 Capture Using Solid Sorbents: A Review , 2012 .

[87]  J. Long,et al.  Introduction to metal-organic frameworks. , 2012, Chemical reviews.

[88]  Jitong Wang,et al.  Surfactant promoted solid amine sorbents for CO2 capture , 2012 .

[89]  Christopher W. Jones,et al.  Poly(allylamine)–Mesoporous Silica Composite Materials for CO2 Capture from Simulated Flue Gas or Ambient Air , 2011 .

[90]  Christopher W. Jones,et al.  Mesoporous Alumina-Supported Amines as Potential Steam-Stable Adsorbents for Capturing CO2 from Simulated Flue Gas and Ambient Air , 2011 .

[91]  Christopher W. Jones,et al.  Amine-oxide hybrid materials for acid gas separations , 2011 .

[92]  Liang‐Nian He,et al.  CO2 capture and activation by superbase/polyethylene glycol and its subsequent conversion , 2011 .

[93]  Aldo Steinfeld,et al.  Amine-based nanofibrillated cellulose as adsorbent for CO₂ capture from air. , 2011, Environmental science & technology.

[94]  Christopher W. Jones,et al.  Poly(L-lysine) brush-mesoporous silica hybrid material as a biomolecule-based adsorbent for CO2 capture from simulated flue gas and air. , 2011, Chemistry.

[95]  Tao Wang,et al.  Moisture swing sorbent for carbon dioxide capture from ambient air. , 2011, Environmental science & technology.

[96]  Christopher W. Jones,et al.  CO(2) capture from dilute gases as a component of modern global carbon management. , 2011, Annual review of chemical and biomolecular engineering.

[97]  Christopher W. Jones,et al.  Amine-tethered solid adsorbents coupling high adsorption capacity and regenerability for CO2 capture from ambient air. , 2011, ChemSusChem.

[98]  Christopher W. Jones,et al.  Application of amine-tethered solid sorbents for direct CO2 capture from the ambient air. , 2011, Environmental science & technology.

[99]  Chunshan Song,et al.  High-Capacity and Low-Cost Carbon-Based Molecular Basket Sorbent for CO2 Capture from Flue Gas , 2011 .

[100]  Wha-Seung Ahn,et al.  CO2 capture using mesoporous alumina prepared by a sol–gel process , 2011 .

[101]  G. Olah,et al.  Nanostructured silica as a support for regenerable high-capacity organoamine-based CO2 sorbents , 2010 .

[102]  Christopher W. Jones,et al.  Structural changes of silica mesocellular foam supported amine-functionalized CO2 adsorbents upon exposure to steam. , 2010, ACS applied materials & interfaces.

[103]  J. Tanthana,et al.  In situ infrared study of the role of PEG in stabilizing silica-supported amines for CO(2) capture. , 2010, ChemSusChem.

[104]  Youssef Belmabkhout,et al.  Amine-bearing mesoporous silica for CO2 removal from dry and humid air , 2010 .

[105]  J. Tanthana,et al.  Oxide‐supported tetraethylenepentamine for CO2 capture , 2009 .

[106]  D. Schrag,et al.  Storage of Carbon Dioxide in Offshore Sediments , 2009, Science.

[107]  Christopher W. Jones,et al.  Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. , 2009, ChemSusChem.

[108]  K. Lackner Capture of carbon dioxide from ambient air , 2009 .

[109]  Colin E. Snape,et al.  Thermal stability of polyethylenimine based carbon dioxide adsorbents and its influence on selection of regeneration strategies , 2008 .

[110]  D. Klemm,et al.  Cellulose: fascinating biopolymer and sustainable raw material. , 2005, Angewandte Chemie.

[111]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[112]  R. T. Yang,et al.  CO2 capture (including direct air capture) and natural gas desulfurization of amine-grafted hierarchical bimodal silica , 2022 .

[113]  Louise B. Hamdy,et al.  Epoxy Cross-Linked Polyamine CO2 Sorbents Enhanced via Hydrophobic Functionalization , 2019, Chemistry of Materials.

[114]  Matthias Wessling,et al.  High capacity polyethylenimine impregnated microtubes made of carbon nanotubes for CO 2 capture , 2018 .

[115]  Zhong-yang Luo,et al.  A Moisture Swing Sorbent for Direct Air Capture of Carbon Dioxide: Thermodynamic and Kinetic analysis , 2013 .

[116]  P. V. Danckwerts The reaction of CO2 with ethanolamines , 1979 .

[117]  Michael Caplow,et al.  Kinetics of carbamate formation and breakdown , 1968 .