Epitaxial Metal Halide Perovskites by Inkjet‐Printing on Various Substrates

Metal‐halide‐perovskites revolutionized the field of thin‐film semiconductor technology, due to their favorable optoelectronic properties and facile solution processing. Further improvements of perovskite thin‐film devices require structural coherence on the atomic scale. Such perfection is achieved by epitaxial growth, a method that is based on the use of high‐end deposition chambers. Here epitaxial growth is enabled via a ≈1000 times cheaper device, a single nozzle inkjet printer. By printing, single‐crystal micro‐ and nanostructure arrays and crystalline coherent thin films are obtained on selected substrates. The hetero‐epitaxial structures of methylammonium PbBr3 grown on lattice matching substrates exhibit similar luminescence as bulk single crystals, but the crystals phase transitions are shifted to lower temperatures, indicating a structural stabilization due to interfacial lattice anchoring by the substrates. Thus, the inkjet‐printing of metal‐halide perovskites provides improved material characteristics in a highly economical way, as a future cheap competitor to the high‐end semiconductor growth technologies.

[1]  Sheng Xu,et al.  Strain engineering and epitaxial stabilization of halide perovskites , 2020, Nature.

[2]  Sasa Wang,et al.  2D Hybrid Perovskite Ferroelectric Enables Highly Sensitive X‐Ray Detection with Low Driving Voltage , 2019, Advanced Functional Materials.

[3]  X. Tao,et al.  Single Crystal Perovskite Solar Cells: Development and Perspectives , 2019, Advanced Functional Materials.

[4]  Zhizhong Chen,et al.  Carrier lifetime enhancement in halide perovskite via remote epitaxy , 2019, Nature Communications.

[5]  Andrew H. Proppe,et al.  Lattice anchoring stabilizes solution-processed semiconductors , 2019, Nature.

[6]  Zhaolai Chen,et al.  Single-Crystal MAPbI3 Perovskite Solar Cells Exceeding 21% Power Conversion Efficiency , 2019, ACS Energy Letters.

[7]  J. Switzer,et al.  Spin coating epitaxial films , 2019, Science.

[8]  Xudong Wang,et al.  Recent Advances in Halide Perovskite Single‐Crystal Thin Films: Fabrication Methods and Optoelectronic Applications , 2019, Solar RRL.

[9]  Minsu Jung,et al.  Perovskite precursor solution chemistry: from fundamentals to photovoltaic applications. , 2019, Chemical Society reviews.

[10]  Koji Yamada,et al.  Temperature-Dependent Evolution of Raman Spectra of Methylammonium Lead Halide Perovskites, CH3NH3PbX3 (X = I, Br) , 2019, Molecules.

[11]  Jinsong Huang,et al.  Fast Growth of Thin MAPbI3 Crystal Wafers on Aqueous Solution Surface for Efficient Lateral‐Structure Perovskite Solar Cells , 2019, Advanced Functional Materials.

[12]  P. Meredith,et al.  Scaling of next generation solution processed organic and perovskite solar cells , 2018, Nature Communications.

[13]  Jiangyu Li,et al.  Atomic scale insights into structure instability and decomposition pathway of methylammonium lead iodide perovskite , 2018, Nature Communications.

[14]  T. S. Senthil,et al.  Importance of halide perovskites for next generation solar cells – A review , 2018 .

[15]  Jack C. Lee,et al.  High-Performance Photodetectors Based on Solution-Processed Epitaxial Grown Hybrid Halide Perovskites. , 2018, Nano letters.

[16]  Christoph J. Brabec,et al.  A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells , 2017, Science.

[17]  Qingfeng Dong,et al.  Thin single crystal perovskite solar cells to harvest below-bandgap light absorption , 2017, Nature Communications.

[18]  K. Sun,et al.  Unlocking the Single‐Domain Epitaxy of Halide Perovskites , 2017 .

[19]  Darien J. Morrow,et al.  Single-Crystal Thin Films of Cesium Lead Bromide Perovskite Epitaxially Grown on Metal Oxide Perovskite (SrTiO3). , 2017, Journal of the American Chemical Society.

[20]  Kyung Sun Park,et al.  Wafer-scale single-crystal perovskite patterned thin films based on geometrically-confined lateral crystal growth , 2017, Nature Communications.

[21]  Jinsong Huang,et al.  Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging , 2017, Nature Photonics.

[22]  J. Stangl,et al.  Quasi-epitaxial Metal-Halide Perovskite Ligand Shells on PbS Nanocrystals. , 2017, ACS nano.

[23]  Shaohua Shen,et al.  Vapor-Phase Epitaxial Growth of Aligned Nanowire Networks of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I). , 2017, Nano letters.

[24]  L. Kronik,et al.  Local Polar Fluctuations in Lead Halide Perovskite Crystals. , 2016, Physical review letters.

[25]  Jin-Song Hu,et al.  General Space-Confined On-Substrate Fabrication of Thickness-Adjustable Hybrid Perovskite Single-Crystalline Thin Films. , 2016, Journal of the American Chemical Society.

[26]  X. Ren,et al.  Thinness‐ and Shape‐Controlled Growth for Ultrathin Single‐Crystalline Perovskite Wafers for Mass Production of Superior Photoelectronic Devices , 2016, Advanced materials.

[27]  A. Walsh,et al.  Dynamic disorder, phonon lifetimes, and the assignment of modes to the vibrational spectra of methylammonium lead halide perovskites. , 2016, Physical chemistry chemical physics : PCCP.

[28]  Wei Xu,et al.  Solution‐Grown Monocrystalline Hybrid Perovskite Films for Hole‐Transporter‐Free Solar Cells , 2016, Advanced materials.

[29]  Oleksandr Voznyy,et al.  Highly efficient quantum dot near-infrared light-emitting diodes , 2016, Nature Photonics.

[30]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[31]  Yiping Wang,et al.  Two-Dimensional van der Waals Epitaxy Kinetics in a Three-Dimensional Perovskite Halide , 2015, 1509.08119.

[32]  Yaohua Mai,et al.  Controllable Grain Morphology of Perovskite Absorber Film by Molecular Self-Assembly toward Efficient Solar Cell Exceeding 17%. , 2015, Journal of the American Chemical Society.

[33]  Alain Goriely,et al.  High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization , 2015, Nature Communications.

[34]  C. Brabec,et al.  Detection of X-ray photons by solution-processed lead halide perovskites , 2015, Nature Photonics.

[35]  D. Ginger,et al.  Impact of microstructure on local carrier lifetime in perovskite solar cells , 2015, Science.

[36]  Ronn Andriessen,et al.  High efficiency, fully inkjet printed organic solar cells with freedom of design , 2015 .

[37]  Qingfeng Dong,et al.  Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals , 2015, Science.

[38]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[39]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[40]  Zhenxing Wang,et al.  Van der Waals epitaxy and photoresponse of hexagonal tellurium nanoplates on flexible mica sheets. , 2014, ACS nano.

[41]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[42]  Mikkel Jørgensen,et al.  Roll‐to‐Roll Inkjet Printing and Photonic Sintering of Electrodes for ITO Free Polymer Solar Cell Modules and Facile Product Integration , 2013 .

[43]  Mikkel Jørgensen,et al.  Silver front electrode grids for ITO-free all printed polymer solar cells with embedded and raised topographies, prepared by thermal imprint, flexographic and inkjet roll-to-roll processes. , 2012, Nanoscale.

[44]  H. Andersson,et al.  Inkjet Printed Silver Nanoparticle Humidity Sensor With Memory Effect on Paper , 2012, IEEE Sensors Journal.

[45]  Tse Nga Ng,et al.  Organic inkjet-patterned memory array based on ferroelectric field-effect transistors , 2011 .

[46]  G. Ceder,et al.  Feasibility of band gap engineering of pyrite FeS , 2011 .

[47]  Wei Wang,et al.  Inkjet printed chalcopyrite CuInxGa1−xSe2 thin film solar cells , 2011 .

[48]  H. Matsui,et al.  Inkjet printing of single-crystal films , 2011, Nature.

[49]  R. Ruoff,et al.  All-organic vapor sensor using inkjet-printed reduced graphene oxide. , 2010, Angewandte Chemie.

[50]  K. Durose,et al.  Self-selecting vapour growth of bulk crystals – Principles and applicability , 2005 .

[51]  H. Sirringhaus,et al.  High-Resolution Ink-Jet Printing of All-Polymer Transistor Circuits , 2000, Science.

[52]  Holy,et al.  Self-organized growth of three- dimensional quantum-Dot crystals with fcc-like stacking and a tunable lattice constant , 1998, Science.

[53]  Bernard S. Meyerson,et al.  Cooperative growth phenomena in silicon/germanium low-temperature epitaxy , 1988 .

[54]  Bernard S. Meyerson,et al.  Low‐temperature silicon epitaxy by ultrahigh vacuum/chemical vapor deposition , 1986 .

[55]  H. Amano,et al.  Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer , 1986 .

[56]  L. Goldstein,et al.  Growth by molecular beam epitaxy and characterization of InAs/GaAs strained‐layer superlattices , 1985 .

[57]  D. J. Ashen,et al.  The incorporation and characterisation of acceptors in epitaxial GaAs , 1975 .