Lanczos-type variants of the COCR method for complex nonsymmetric linear systems
暂无分享,去创建一个
Yong Zhang | Yong Duan | Ting-Zhu Huang | Bruno Carpentieri | Liang Li | Tomohiro Sogabe | Zhi-Gang Ren | Yan-Fei Jing | Guang-hui Cheng | Tingzhu Huang | G. Cheng | Liang Li | B. Carpentieri | Y. Jing | Zhi‐Gang Ren | T. Sogabe | Yong Zhang | Y. Duan
[1] M. Benzi. Preconditioning techniques for large linear systems: a survey , 2002 .
[2] Zhishun A. Liu,et al. A Look Ahead Lanczos Algorithm for Unsymmetric Matrices , 1985 .
[3] C. Brezinski,et al. Hybrid procedures for solving linear systems , 1994 .
[4] D. R. Fokkema,et al. BiCGstab(ell) for Linear Equations involving Unsymmetric Matrices with Complex Spectrum , 1993 .
[5] Martin H. Gutknecht,et al. Variants of BICGSTAB for Matrices with Complex Spectrum , 1993, SIAM J. Sci. Comput..
[6] C. Lanczos. Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .
[7] R. Freund,et al. QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .
[8] Richard Barrett,et al. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.
[9] M. Gutknecht,et al. Residual Smoothing Techniques: Do They Improve the Limiting Accuracy of Iterative Solvers? , 1999 .
[10] Bruce Hendrickson,et al. An Improved Spectral Graph Partitioning Algorithm for Mapping Parallel Computations , 1995, SIAM J. Sci. Comput..
[11] T. Sogabe,et al. A COCR method for solving complex symmetric linear systems , 2007 .
[12] E. Stiefel,et al. Relaxationsmethoden bester Strategie zur Lösung linearer Gleichungssysteme , 1955 .
[13] Thomas Weiland,et al. Comparison of Krylov-type methods for complex linear systems applied to high-voltage problems , 1998 .
[14] Miroslav Rozlozník,et al. By How Much Can Residual Minimization Accelerate the Convergence of Orthogonal Residual Methods? , 2001, Numerical Algorithms.
[15] Beresford N. Parlett,et al. Reduction to Tridiagonal Form and Minimal Realizations , 1992, SIAM J. Matrix Anal. Appl..
[16] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[17] Gérard Meurant,et al. Complex conjugate gradient methods , 1993, Numerical Algorithms.
[18] Roland W. Freund,et al. An Implementation of the Look-Ahead Lanczos Algorithm for Non-Hermitian Matrices , 1993, SIAM J. Sci. Comput..
[19] J. Cullum,et al. Lanczos algorithms for large symmetric eigenvalue computations , 1985 .
[20] M. D. Pocock,et al. The complex bi-conjugate gradient solver applied to large electromagnetic scattering problems, computational costs, and cost scalings , 1997 .
[21] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .
[22] Martin H. Gutknecht,et al. Lanczos-type solvers for nonsymmetric linear systems of equations , 1997, Acta Numerica.
[23] R. Weiss. A theoretical overview of Krylov subspace methods , 1995 .
[24] 知広 曽我部. Extensions of the conjugate residual method , 2006 .
[25] Anne Greenbaum,et al. Relations between Galerkin and Norm-Minimizing Iterative Methods for Solving Linear Systems , 1996, SIAM J. Matrix Anal. Appl..
[26] J. Cullum,et al. A generalized nonsymmetric Lanczos procedure , 1989 .
[27] Rüdiger Weiss,et al. Parameter-Free Iterative Linear Solvers , 1996 .
[28] Markus Clemens,et al. Iterative Methods for the Solution of Very Large Complex Symmetric Linear Systems of Equations in El , 1996 .
[29] D. Day,et al. An Efficient Implementation of the Nonsymmetric Lanczos Algorithm , 1997 .
[30] M. Eiermann,et al. Geometric aspects of the theory of Krylov subspace methods , 2001, Acta Numerica.
[31] Jane K. Collum. Peaks, plateaus, numerical instabilities in a Galerkin minimal residual pair of methods for solving Ax = b , 1995 .
[32] Roland W. Freund,et al. A Transpose-Free Quasi-Minimal Residual Algorithm for Non-Hermitian Linear Systems , 1993, SIAM J. Sci. Comput..
[33] Y. Saad,et al. Iterative solution of linear systems in the 20th century , 2000 .
[34] Homer F. Walker,et al. Residual smoothing and peak/plateau behavior in Krylov subspace methods , 1995 .
[35] Raj Mittra,et al. The biconjugate gradient method for electromagnetic scattering , 1990 .
[36] R. Fletcher. Conjugate gradient methods for indefinite systems , 1976 .
[37] David Pardo,et al. Electromagnetic Scattering Problems , 2007 .
[38] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[39] Jack J. Dongarra,et al. Guest Editors Introduction to the top 10 algorithms , 2000, Comput. Sci. Eng..
[40] Rüdiger Weiss,et al. Properties of generalized conjugate gradient methods , 1994, Numer. Linear Algebra Appl..
[41] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[42] M. Sugihara,et al. An extension of the conjugate residual method to nonsymmetric linear systems , 2009 .
[43] P. Sonneveld. CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .
[44] G. Markham. Conjugate Gradient Type Methods for Indefinite, Asymmetric, and Complex Systems , 1990 .
[45] H. V. D. Vorst,et al. A Petrov-Galerkin type method for solving Axk=b, where A is symmetric complex , 1990 .
[46] Homer F. Walker,et al. Residual Smoothing Techniques for Iterative Methods , 1994, SIAM J. Sci. Comput..
[47] Peter N. Brown,et al. A Theoretical Comparison of the Arnoldi and GMRES Algorithms , 1991, SIAM J. Sci. Comput..
[48] H. V. D. Vorst,et al. The convergence behaviour of preconditioned CG and CG-S in the presence of rounding errors , 1991 .
[49] Valeria Simoncini,et al. Recent computational developments in Krylov subspace methods for linear systems , 2007, Numer. Linear Algebra Appl..
[50] D. A. H. Jacobs,et al. A Generalization of the Conjugate-Gradient Method to Solve Complex Systems , 1986 .
[51] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[52] C. Brezinski. Padé-type approximation and general orthogonal polynomials , 1980 .
[53] T. Sarkar. On the Application of the Generalized BiConjugate Gradient Method , 1987 .
[54] Timothy A. Davis,et al. The university of Florida sparse matrix collection , 2011, TOMS.
[55] Miroslav Rozlozník,et al. A framework for generalized conjugate gradient methods-with special emphasis on contributions by Rüdiger Weiss , 2002 .
[56] Yong Zhang,et al. Application of the incomplete Cholesky factorization preconditioned Krylov subspace method to the vector finite element method for 3-D electromagnetic scattering problems , 2010, Comput. Phys. Commun..
[57] Rüdiger Weiss,et al. Convergence behavior of generalized conjugate gradient methods , 1990 .
[58] M. Saunders,et al. Solution of Sparse Indefinite Systems of Linear Equations , 1975 .
[59] H. V. D. Vorst,et al. An overview of approaches for the stable computation of hybrid BiCG methods , 1995 .
[60] Hassane Sadok,et al. Analysis of the convergence of the minimal and the orthogonal residual methods , 2005, Numerical Algorithms.