On the Difference of Expected Lengths of Minimum Spanning Trees

An exact formula for the expected length of the minimum spanning tree of a connected graph, with independent and identical edge distribution, is given, which generalizes Steele's formula in the uniform case. For a complete graph, the difference of expected lengths between exponential distribution, with rate one, and uniform distribution on the interval (0, 1) is shown to be positive and of rate ζ(3)/n. For wheel graphs, precise values of expected lengths are given via calculations of the associated Tutte polynomials.

[1]  Alan M. Frieze,et al.  On the value of a random minimum spanning tree problem , 1985, Discret. Appl. Math..

[2]  Béla Bollobás,et al.  Random Graphs , 1985 .

[3]  W. T. Tutte,et al.  Squaring the Square , 1950, Canadian Journal of Mathematics.

[4]  M. Penrose Random minimal spanning tree and percolation on the N -cube , 1998 .

[5]  Alan M. Frieze,et al.  A Note on Random Minimum Length Spanning Trees , 2000, Electron. J. Comb..

[6]  Boris G. Pittel Where the Typical Set Partitions Meet and Join , 2000, Electron. J. Comb..

[7]  Colin McDiarmid,et al.  Surveys in Combinatorics, 1989: On the method of bounded differences , 1989 .

[8]  D. Bertsimas,et al.  The Minimum Spanning Tree Constant in Geometrical Probability and Under the Independent Model: A Unified Approach , 1992 .

[9]  David Gamarnik The expected value of random minimal length spanning tree of a complete graph , 2005, SODA '05.

[10]  B. Myers Number of spanning trees in a wheel , 1971 .

[11]  W. T. Tutte,et al.  A Class of Self-Dual Maps , 1950, Canadian Journal of Mathematics.

[12]  Alan M. Frieze,et al.  Random Minimum Length Spanning Trees in Regular Graphs , 1998, Comb..

[13]  C. McDiarmid,et al.  On random minimum length spanning trees , 1989 .

[14]  Philippe Flajolet,et al.  Mathematics and Computer Science Iii: "Algorithms, Trees, Combinatorics And Probabilities" , 2004 .

[15]  Abraham D. Flaxman,et al.  The Lower Tail of the Random Minimum Spanning Tree , 2007, Electron. J. Comb..

[16]  Béla Bollobás,et al.  Random Graphs: Notation , 2001 .

[17]  J. Michael Steele,et al.  Minimal Spanning Trees for Graphs with Random Edge Lengths , 2002 .

[18]  Dominic Welsh,et al.  The Tutte polynomial , 1999, Random Struct. Algorithms.

[19]  J. Michael Steele,et al.  Exact Expectations of Minimal Spanning Trees for Graphs With Random Edge Weights , 2005 .

[20]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[21]  Kevin Hutson,et al.  The Expected Length of a Minimal Spanning Tree of a Cylinder Graph , 2006, Combinatorics, Probability and Computing.

[22]  A. Cayley A theorem on trees , 2009 .

[23]  Svante Janson,et al.  The Minimal Spanning Tree in a Complete Graph and a Functional Limit Theorem for Trees in a Random Graph , 1995, Random Struct. Algorithms.

[24]  Arthur T. Benjamin,et al.  Combinatorial Interpretations of Spanning Tree Identities , 2006 .

[25]  J. Michael Steele,et al.  On Frieze's χ(3) limit for lengths of minimal spanning trees , 1987, Discret. Appl. Math..

[26]  Svante Janson Multicyclic Components in a Random Graph Process , 1993, Random Struct. Algorithms.

[27]  Béla Bollobás,et al.  Modern Graph Theory , 2002, Graduate Texts in Mathematics.