Stability radii of positive higher order difference systems under fractional perturbations

In this paper we study stability radii of positive higher order difference systems under fractional perturbations and affine perturbations of the coefficient matrices. It is shown that real and complex stability radii coincide and can be computed by a simple formula. Finally, a simple example is given to illustrate the obtained results.

[1]  Diederich Hinrichsen,et al.  Stability radii of linear discrete‐time systems and symplectic pencils , 1991 .

[2]  F. Fairman Introduction to dynamic systems: Theory, models and applications , 1979, Proceedings of the IEEE.

[3]  F. R. Gantmakher The Theory of Matrices , 1984 .

[4]  Nguyen Khoa Son,et al.  Stability radii of delay difference systems under affine parameter perturbations in infinite dimensional spaces , 2008, Appl. Math. Comput..

[5]  Nguyen Khoa Son,et al.  Stability radii of positive linear systems under fractional perturbations , 2009 .

[6]  Edward J. Davison,et al.  A formula for computation of the real stability radius , 1995, Autom..

[7]  L. Mirsky,et al.  The Theory of Matrices , 1961, The Mathematical Gazette.

[8]  Diederich Hinrichsen,et al.  Modelling, state space analysis, stability and robustness , 2005 .

[9]  Nguyen Khoa Son,et al.  Stability radii of positive higher order difference system in infinite dimensional spaces , 2008, Syst. Control. Lett..

[10]  Nguyen Khoa Son,et al.  Stability radii of positive linear time-delay systems under fractional perturbations , 2009, Syst. Control. Lett..

[11]  D. Hinrichsen,et al.  Mathematical Systems Theory I: Modelling, State Space Analysis, Stability and Robustness , 2010 .

[12]  Nguyen Khoa Son,et al.  Stability radii of higher order positive di erence systems , 2003 .

[13]  R. Bellman,et al.  Differential-Difference Equations , 1967 .

[14]  A. Hatley Mathematics in Science and Engineering , Volume 6: Differential- Difference Equations. Richard Bellman and Kenneth L. Cooke. Academic Press, New York and London. 462 pp. 114s. 6d. , 1963, The Journal of the Royal Aeronautical Society.

[15]  Diederich Hinrichsen,et al.  Mathematical Systems Theory I , 2006, IEEE Transactions on Automatic Control.

[16]  P. Van Dooren,et al.  Real and complex stability radii of polynomial matrices , 2002 .

[17]  Nguyen Khoa Son,et al.  Stability radii of positive discrete‐time systems under affine parameter perturbations , 1998 .

[18]  M. Kreĭn,et al.  Linear operators leaving invariant a cone in a Banach space , 1950 .

[19]  Stability radii of positive linear systems under affine parameter perturbations in infinite dimensional spaces , 2008 .

[20]  D. Hinrichsen,et al.  Stability radius for structured perturbations and the algebraic Riccati equation , 1986 .

[21]  D. Hinrichsen,et al.  Real and Complex Stability Radii: A Survey , 1990 .