Shape-Based Analysis on Component-Graphs for Multivalued Image Processing

Abstract Connected operators based on hierarchical image models have been increasingly considered for the design of efficient image segmentation and filtering tools in various application fields. Among hierarchical image models, component-trees represent the structure of grey-level images by considering their nested binary level-sets obtained from successive thresholds. Recently, a new notion of component-graph was introduced to extend the component-tree to any grey-level or multivalued images. The notion of shaping was also introduced as a way to improve the anti-extensive filtering by considering a two-layer component-tree for grey-level image processing. In this article, we study how component-graphs (that extend the component-tree from a spectral point of view) and shapings (that extend the component-tree from a conceptual point of view) can be associated for the effective processing of multivalued images. We provide structural and algorithmic developments. Although the contributions of this article are theoretical and methodological, we also provide two illustration examples that qualitatively emphasize the potential use and usefulness of the proposed paradigms for image analysis purposes.

[1]  Henk J. A. M. Heijmans Connected Morphological Operators for Binary Images , 1999, Comput. Vis. Image Underst..

[2]  Christophe Collet,et al.  Hyperconnections and Hierarchical Representations for Grayscale and Multiband Image Processing , 2012, IEEE Transactions on Image Processing.

[3]  Azriel Rosenfeld,et al.  Connectivity in Digital Pictures , 1970, JACM.

[4]  Nicolas Passat,et al.  An extension of component-trees to partial orders , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[5]  Hugues Talbot,et al.  Hierarchies and shape-space for pet image segmentation , 2015, 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI).

[6]  Henk J. A. M. Heijmans,et al.  Theoretical Aspects of Gray-Level Morphology , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Jesús Angulo,et al.  Geometric algebra colour image representations and derived total orderings for morphological operators - Part I: Colour quaternions , 2010, J. Vis. Commun. Image Represent..

[8]  Hervé Le Men,et al.  Scale-Sets Image Analysis , 2005, International Journal of Computer Vision.

[9]  Azriel Rosenfeld,et al.  Digital topology: Introduction and survey , 1989, Comput. Vis. Graph. Image Process..

[10]  Nicolas Passat,et al.  Interactive Segmentation Based on Component-trees , 2011, Image Process. Line.

[11]  Holly Bridge,et al.  Central fixation task activates ventral LOC and dorsal hMT in human visual cortex , 2010 .

[12]  Ronen Basri,et al.  Image Segmentation by Probabilistic Bottom-Up Aggregation and Cue Integration , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[13]  Vladimir A. Kovalevsky,et al.  Finite topology as applied to image analysis , 1989, Comput. Vis. Graph. Image Process..

[14]  Hugues Talbot,et al.  Directed Connected Operators: Asymmetric Hierarchies for Image Filtering and Segmentation , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Thierry Géraud,et al.  MToS: A Tree of Shapes for Multivariate Images , 2015, IEEE Transactions on Image Processing.

[16]  Nicolas Passat,et al.  Connected Filtering Based on Multivalued Component-Trees , 2014, IEEE Transactions on Image Processing.

[17]  Philippe Salembier,et al.  Flat zones filtering, connected operators, and filters by reconstruction , 1995, IEEE Trans. Image Process..

[18]  Emmanuel Bertin,et al.  Effective Component Tree Computation with Application to Pattern Recognition in Astronomical Imaging , 2007, 2007 IEEE International Conference on Image Processing.

[19]  Hugues Talbot,et al.  Mathematical Morphology: from theory to applications , 2013 .

[20]  Ulisses Braga-Neto,et al.  A Theoretical Tour of Connectivity in Image Processing and Analysis , 2003, Journal of Mathematical Imaging and Vision.

[21]  Jesús Angulo,et al.  N-ary Mathematical Morphology , 2015, ISMM.

[22]  Laurent Najman,et al.  Geodesic Saliency of Watershed Contours and Hierarchical Segmentation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Jean Cousty,et al.  A graph-based mathematical morphology reader , 2014, Pattern Recognit. Lett..

[24]  Vincent Agnus,et al.  Morphology on Label Images: Flat-Type Operators and Connections , 2005, Journal of Mathematical Imaging and Vision.

[25]  Nicolas Passat,et al.  Segmentation using vector-attribute filters: methodology and application to dermatological imaging , 2007, ISMM.

[26]  Ewa Kijak,et al.  Partition and Inclusion Hierarchies of Images: A Comprehensive Survey , 2018, J. Imaging.

[27]  Sébastien Lefèvre,et al.  A comparative study on multivariate mathematical morphology , 2007, Pattern Recognit..

[28]  Michael H. F. Wilkinson,et al.  Vector-Attribute Filters , 2005, ISMM.

[29]  Philippe Salembier,et al.  Binary partition tree as an efficient representation for image processing, segmentation, and information retrieval , 2000, IEEE Trans. Image Process..

[30]  Jesús Angulo,et al.  Morphological colour operators in totally ordered lattices based on distances: Application to image filtering, enhancement and analysis , 2007, Comput. Vis. Image Underst..

[31]  Michael H. F. Wilkinson,et al.  Volumetric Attribute Filtering and Interactive Visualization Using the Max-Tree Representation , 2007, IEEE Transactions on Image Processing.

[32]  Jean Paul Frédéric Serra Connectivity on Complete Lattices , 2004, Journal of Mathematical Imaging and Vision.

[33]  Pierre Soille,et al.  Pattern Spectra from Partition Pyramids and Hierarchies , 2011, ISMM.

[34]  Michael H. F. Wilkinson,et al.  Mask-Based Second-Generation Connectivity and Attribute Filters , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  Michel Couprie,et al.  Building the Component Tree in Quasi-Linear Time , 2006, IEEE Transactions on Image Processing.

[36]  Ronald Jones,et al.  Attribute Openings, Thinnings, and Granulometries , 1996, Comput. Vis. Image Underst..

[37]  Sébastien Lefèvre,et al.  On lexicographical ordering in multivariate mathematical morphology , 2008, Pattern Recognit. Lett..

[38]  Jesús Angulo,et al.  Supervised Ordering in ${\rm I}\!{\rm R}^p$: Application to Morphological Processing of Hyperspectral Images , 2011, IEEE Transactions on Image Processing.

[39]  Nicolas Passat,et al.  Implicit Component-Graph: A Discussion , 2017, ISMM.

[40]  Nicolas Passat,et al.  Towards Connected Filtering Based on Component-Graphs , 2013, ISMM.

[41]  Michel Couprie,et al.  Paths, Homotopy and Reduction in Digital Images , 2011 .

[42]  Hélène Urien,et al.  Détection et segmentation de lésions dans des images cérébrales TEP-IRM , 2018 .

[43]  Ronald Jones,et al.  Connected Filtering and Segmentation Using Component Trees , 1999, Comput. Vis. Image Underst..

[44]  Kuo-Liang Chung,et al.  New orientation-based elimination approach for accurate line-detection , 2010, Pattern Recognit. Lett..

[45]  Yongchao Xu,et al.  Connected Filtering on Tree-Based Shape-Spaces , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[46]  Nicolas Passat,et al.  Component-Trees and Multi-value Images: A Comparative Study , 2009, ISMM.

[47]  Hui Gao,et al.  Concurrent Computation of Attribute Filters on Shared Memory Parallel Machines , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[48]  Pascal Monasse,et al.  Scale-Space from a Level Lines Tree , 2000, J. Vis. Commun. Image Represent..

[49]  Jean Paul Frédéric Serra,et al.  Braids of Partitions , 2015, ISMM.

[50]  Nicolas Passat,et al.  Component-Hypertrees for Image Segmentation , 2011, ISMM.

[51]  Naif Alajlan,et al.  Geometry-Based Image Retrieval in Binary Image Databases , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[52]  Hugues Talbot,et al.  Shape-Based Analysis on Component-Graphs for Multivalued Image Processing , 2015, ISMM.

[53]  Sargur N. Srihari,et al.  A hierarchical data structure for multidimensional digital images , 1983, CACM.

[54]  Laurent Wendling,et al.  A document binarization method based on connected operators , 2010, Pattern Recognit. Lett..

[55]  V. Barnett The Ordering of Multivariate Data , 1976 .

[56]  Jocelyn Chanussot,et al.  Color and Multivariate Images , 2013 .

[57]  Thierry Géraud,et al.  A Morphological Tree of Shapes for Color Images , 2014, 2014 22nd International Conference on Pattern Recognition.

[58]  Krishnamoorthy Sivakumar,et al.  Morphological Operators for Image Sequences , 1995, Comput. Vis. Image Underst..

[59]  Adrian N. Evans,et al.  An evaluation of area morphology scale-spaces for colour images , 2008, Comput. Vis. Image Underst..

[60]  Hugues Talbot,et al.  Complete ordering and multivariate mathematical morphology , 1998 .

[61]  Thierry Géraud,et al.  A Comparative Review of Component Tree Computation Algorithms , 2014, IEEE Transactions on Image Processing.

[62]  Philippe Salembier,et al.  Antiextensive connected operators for image and sequence processing , 1998, IEEE Trans. Image Process..

[63]  Nicolas Passat,et al.  Component-Graph Construction , 2019, Journal of Mathematical Imaging and Vision.

[64]  Christian Ronse,et al.  Set-Theoretical Algebraic Approaches to Connectivity in Continuous or Digital Spaces , 2004, Journal of Mathematical Imaging and Vision.

[65]  Michael H. F. Wilkinson,et al.  Connected Shape-Size Pattern Spectra for Rotation and Scale-Invariant Classification of Gray-Scale Images , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[66]  Ulisses Braga-Neto,et al.  Connectivity on Complete Lattices: New Results , 2002, Comput. Vis. Image Underst..

[67]  Nicolas Passat,et al.  Component-Trees and Multivalued Images: Structural Properties , 2013, Journal of Mathematical Imaging and Vision.

[68]  Pierre Soille,et al.  Constrained connectivity for hierarchical image partitioning and simplification , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[69]  Nicolas Passat,et al.  Colour Image Filtering with Component-Graphs , 2014, 2014 22nd International Conference on Pattern Recognition.

[70]  Azriel Rosenfeld,et al.  Hierarchical Image Analysis Using Irregular Tessellations , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[71]  Pascal Monasse,et al.  Fast computation of a contrast-invariant image representation , 2000, IEEE Trans. Image Process..