Safe numerical bounds for the Titchmarsh–Weyl m(λ)-function

Abstract Recent efforts have been focused on using numerical methods to estimate the Titchmarsh–Weyl m-coefficient. In this paper we look at interval analytic methods to provide provable bounds for these values.

[1]  J. D. Pryce,et al.  A numerical method for the determination of the Titchmarsh-Weyl m-coefficient , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[2]  J. Pryce,et al.  Numerical determination of the Titchmarsh-Weyl m-coefficient and its applications to HELP inequalities , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[3]  Ian J. Thompson,et al.  Modified bessel functions Iv(z) and Kv(z) of real order and complex argument, to selected accuracy , 1987 .

[4]  W. D. Evans,et al.  On a class of integral inequalities of Hardy-Littlewood type , 1986 .

[5]  W. D. Evans,et al.  A return to the Hardy-Littlewood integral inequality , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[6]  F. Atkinson On the location of the Weyl circles , 1981, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[7]  Hirondo Kuki,et al.  Complex gamma function with error control , 1972, CACM.

[8]  E. C. Titchmarsh ON EXPANSIONS IN EIGENFUNCTIONS (II) , 1941 .

[9]  J. Littlewood,et al.  SOME INTEGRAL INEQUALITIES CONNECTED WITH THE CALCULUS OF VARIATIONS , 1932 .

[10]  H. Weyl,et al.  Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen , 1910 .