Safe numerical bounds for the Titchmarsh–Weyl m(λ)-function
暂无分享,去创建一个
[1] J. D. Pryce,et al. A numerical method for the determination of the Titchmarsh-Weyl m-coefficient , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[2] J. Pryce,et al. Numerical determination of the Titchmarsh-Weyl m-coefficient and its applications to HELP inequalities , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[3] Ian J. Thompson,et al. Modified bessel functions Iv(z) and Kv(z) of real order and complex argument, to selected accuracy , 1987 .
[4] W. D. Evans,et al. On a class of integral inequalities of Hardy-Littlewood type , 1986 .
[5] W. D. Evans,et al. A return to the Hardy-Littlewood integral inequality , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[6] F. Atkinson. On the location of the Weyl circles , 1981, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[7] Hirondo Kuki,et al. Complex gamma function with error control , 1972, CACM.
[8] E. C. Titchmarsh. ON EXPANSIONS IN EIGENFUNCTIONS (II) , 1941 .
[9] J. Littlewood,et al. SOME INTEGRAL INEQUALITIES CONNECTED WITH THE CALCULUS OF VARIATIONS , 1932 .
[10] H. Weyl,et al. Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen , 1910 .