Evaluation of a randomized parameter setting strategy for island-model evolutionary algorithms

This paper presents a large-scale, empirical evaluation of a Random, Heterogeneous Island-Model (RHIM) for evolutionary algorithms (EAs), where the control parameter values are independently, randomly assigned for each island that has recently been proposed by Gong and Fukunaga as a method for configuring island-model evolutionary algorithms in situations where it is not possible to expend the resources to carefully tune control parameters for a particular application. We apply RHIM to standard DE, JADE (an adaptive DE), and real-coded genetic algorithms. Evaluations are performed on standard black-box function optimization benchmarks, as well as combinatorial optimization problems (the TSP and QAP). The search efficiency of RHIM is compared to manual tuning of parameter settings for each benchmark problem. Our results with up to 256 islands, show that the search efficiency of RHIM, a method which does not involve any parameter tuning, tends to becomes increasingly competitive with manual parameter tuning as the number of islands increases. The consistent, relatively good performance of RHIM when applied to a variety of EAs on numerous, different benchmark problems suggest that it can be an effective, default method for configuring island-model EAs.

[1]  P. N. Suganthan,et al.  Differential Evolution: A Survey of the State-of-the-Art , 2011, IEEE Transactions on Evolutionary Computation.

[2]  Kalyanmoy Deb,et al.  A Computationally Efficient Evolutionary Algorithm for Real-Parameter Optimization , 2002, Evolutionary Computation.

[3]  Bernhard Sendhoff,et al.  Generalizing Surrogate-Assisted Evolutionary Computation , 2010, IEEE Transactions on Evolutionary Computation.

[4]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[5]  Arthur C. Sanderson,et al.  JADE: Adaptive Differential Evolution With Optional External Archive , 2009, IEEE Transactions on Evolutionary Computation.

[6]  Fernando G. Lobo,et al.  A parameter-less genetic algorithm , 1999, GECCO.

[7]  L. Darrell Whitley,et al.  A Comparison of Genetic Sequencing Operators , 1991, ICGA.

[8]  Márk Jelasity,et al.  Distributed hyper-heuristics for real parameter optimization , 2009, GECCO.

[9]  Bernd Freisleben,et al.  Fitness landscape analysis and memetic algorithms for the quadratic assignment problem , 2000, IEEE Trans. Evol. Comput..

[10]  Francisco Herrera,et al.  Gradual distributed real-coded genetic algorithms , 2000, IEEE Trans. Evol. Comput..

[11]  Ville Tirronen,et al.  Distributed differential evolution with explorative–exploitative population families , 2009, Genetic Programming and Evolvable Machines.

[12]  Carlos A. Coello Coello,et al.  A comparative study of differential evolution variants for global optimization , 2006, GECCO.

[13]  Zbigniew Michalewicz,et al.  Parameter Setting in Evolutionary Algorithms , 2007, Studies in Computational Intelligence.

[14]  Gara Miranda,et al.  A memetic algorithm and a parallel hyperheuristic island-based model for a 2D packing problem , 2009, GECCO.

[15]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[16]  Tomoyuki Hiroyasu,et al.  A parallel genetic algorithm with distributed environment scheme , 1999, IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028).

[17]  Francisco Herrera,et al.  Real-Coded Memetic Algorithms with Crossover Hill-Climbing , 2004, Evolutionary Computation.

[18]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[19]  Alex S. Fukunaga,et al.  Distributed island-model genetic algorithms using heterogeneous parameter settings , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[20]  Jing Tang,et al.  Adaptation for parallel memetic algorithm based on population entropy , 2006, GECCO '06.

[21]  Hans-Georg Beyer,et al.  Self-Adaptation in Evolutionary Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[22]  Fei Peng,et al.  Population-Based Algorithm Portfolios for Numerical Optimization , 2010, IEEE Transactions on Evolutionary Computation.

[23]  Erick Cantú-Paz,et al.  Parameter Setting in Parallel Genetic Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[24]  Pascal Bouvry,et al.  Improving Classical and Decentralized Differential Evolution With New Mutation Operator and Population Topologies , 2011, IEEE Transactions on Evolutionary Computation.