Photodissociation of adsorbed Mo(CO)6 induced by direct photoexcitation and hot electron attachment. I. Surface chemistry

The adsorption and photodissociation of Mo(CO)6 on potassium‐free and potassium‐preadsorbed Cu(111) and Si(111)7×7 have been studied under ultrahigh vacuum conditions using vibrational spectroscopy and mass spectrometry. It has been observed that Mo(CO)6 adsorbs molecularly on potassium‐free Cu(111) and Si(111)7×7 at 85 K and, upon heating, desorbs at 200 K. In the case of Cu(111), heating also leads to thermal dissociation of a fraction of Mo(CO)6 at ∼150 K. The dissociation channel competes favorably with the molecular desorption channel at low Mo(CO)6 exposures. On potassium‐preadsorbed Cu(111) and Si(111)7×7 at 85 K, Mo(CO)6 adsorbs in part molecularly and in part dissociatively. The extent of dissociation depends on the K coverage; a high K coverage results in large degree of dissociation. The thermal desorption temperature for the molecularly adsorbed Mo(CO)6 increases to 210 K on the potassium‐preadsorbed surfaces. Adsorbed Mo(CO)6 molecules photodissociate nonthermally into CO and carbonyl fragmen...

[1]  W. Ho,et al.  Thermoinduced and photoinduced reactions of NO on Si(111)7×7. II. Effects of potassium coadsorption , 1989 .

[2]  G. Margaritondo,et al.  Synchrotron radiation induced metal deposition on semiconductors: Mo(CO)6 on Si (111) , 1989 .

[3]  R. Jackman,et al.  Thermal and photochemical vapour deposition of Fe from Fe(CO)5 on Si(100) , 1989 .

[4]  Robert E. Walkup,et al.  Fundamental Mechanisms of Desorption and Fragmentation Induced by Electronic Transitions at Surfaces , 1989 .

[5]  Daniel J. Ehrlich,et al.  Laser microfabrication : thin film processes and lithography , 1989 .

[6]  Gerhard Ertl,et al.  Physics and chemistry of alkali metal adsorption , 1989 .

[7]  T. Germer,et al.  The adsorption and photochemistry of Mo(CO)6 on Rh(100) , 1988 .

[8]  F. Celii,et al.  UV laser-induced photochemistry of iron pentacarbonyl on single crystal surfaces in ultrahigh vacuum , 1988 .

[9]  Y. Chabal,et al.  Laser-assisted deposition of iron on Si(111)-(7×7): The mechanism and energetics of Fe(CO)5 decomposition , 1987 .

[10]  F. Celii,et al.  Observation of UV-induced photochemistry of Fe(CO)5 adsorbed on the Ag(110) surface , 1987 .

[11]  D. Heskett,et al.  The coadsorption of oxygen and potassium on Ru(001): Evidence for the formation of K–O compounds , 1987 .

[12]  S. Bernasek,et al.  Summary Abstract: The adsorption and decomposition of molybdenum hexacarbonyl on Mo and Si surfaces , 1987 .

[13]  W. Ho,et al.  Mechanisms of laser interaction with metal carbonyls adsorbed on Si(111)7×7: Thermal vs photoelectronic effects , 1987 .

[14]  W. Kirstein,et al.  CO adsorption studies on pure and Ni-covered Cu(111) surfaces , 1986 .

[15]  E. Weitz,et al.  Wavelength dependence of excimer laser photolysis of Cr(CO)6 in the gas phase. A study of the infrared spectroscopy and reactions of the Cr(CO)x (x = 5, 4, 3, 2) fragments , 1986 .

[16]  R. Hall,et al.  Chemistry and Structure at Interfaces: New Laser and Optical Techniques , 1986 .

[17]  J. R. Creighton Photodecomposition of Mo(CO)6 adsorbed on Si(100) , 1986 .

[18]  D. Bäuerle Chemical processing with lasers , 1986 .

[19]  E. Garfunkel,et al.  The coadsorption of sodium and oxygen on Ag(100): an XPS, UPS and HREELS study , 1985 .

[20]  D. King,et al.  Surface reaction between coadsorbed K and CO on Cu{110} , 1985 .

[21]  J. Hrbek,et al.  The formation and decomposition of KOH on Ru(001) , 1984 .

[22]  T. Chuang Laser-induced gas-surface interactions , 1983 .

[23]  L. Wallden,et al.  Electronic structure of clean and oxygen-exposed Na and Cs monolayers on Cu (111) , 1980 .

[24]  H. Svec,et al.  Comparative mass spectrometry of the group 6B hexacarbonyls and pentacarbonyl thiocarbonyls , 1980 .

[25]  I. Butler,et al.  Vibrational spectra of the pentacarbonyl(thiocarbonyl)metal(0) complexes, M(CO)5(CS) M = chromium, tungsten) and trans-pentacarbonyl(thiocarbonyl)tungsten(0) (90% carbon-13 enriched) , 1976 .

[26]  R. Perutz,et al.  Photochemistry of the Group 6 hexacarbonyls in low-temperature matrixes. IV. Tetracarbonylmolybdenum and tricarbonylmolybdenum , 1975 .

[27]  L. H. Jones,et al.  Force constants of the hexacarbonyls of chromium, molybdenum, and tungsten from the vibrational spectra of isotopic species , 1969 .

[28]  R. E. Weber,et al.  Work function and structural studies of alkali-covered semiconductors , 1969 .