The time of bootstrap percolation with dense initial sets

Let r∈N . In r -neighbour bootstrap percolation on the vertex set of a graph G , vertices are initially infected independently with some probability p . At each time step, the infected set expands by infecting all uninfected vertices that have at least r infected neighbours. When p is close to 1, we study the distribution of the time at which all vertices become infected. Given t=t(n)=o(logn/loglogn) , we prove a sharp threshold result for the probability that percolation occurs by time t in d -neighbour bootstrap percolation on the d -dimensional discrete torus T d n . Moreover, we show that for certain ranges of p=p(n) , the time at which percolation occurs is concentrated either on a single value or on two consecutive values. We also prove corresponding results for the modified d -neighbour rule

[1]  J. Doob Stochastic processes , 1953 .

[2]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[3]  J. Schwartz,et al.  Theory of Self-Reproducing Automata , 1967 .

[4]  C. Stein A bound for the error in the normal approximation to the distribution of a sum of dependent random variables , 1972 .

[5]  Louis H. Y. Chen Poisson Approximation for Dependent Trials , 1975 .

[6]  P. Leath,et al.  Bootstrap percolation on a Bethe lattice , 1979 .

[7]  G. K. Eagleson,et al.  Poisson approximation for some statistics based on exchangeable trials , 1983, Advances in Applied Probability.

[8]  P. Hall,et al.  On the rate of Poisson convergence , 1984, Mathematical Proceedings of the Cambridge Philosophical Society.

[9]  A. Enter Proof of Straley's argument for bootstrap percolation , 1987 .

[10]  Michael Aizenman,et al.  Metastability effects in bootstrap percolation , 1988 .

[11]  L. Gordon,et al.  Two moments su ce for Poisson approx-imations: the Chen-Stein method , 1989 .

[12]  M. Waterman,et al.  The Erdos-Renyi Law in Distribution, for Coin Tossing and Sequence Matching , 1990 .

[13]  A. Barbour,et al.  Poisson Approximation , 1992 .

[14]  Thomas Mountford Rates for the probability of large cubes being non-internally spanned in modified bootstrap percolation , 1992 .

[15]  Louis H. Y. Chen,et al.  Compound Poisson Approximation for Nonnegative Random Variables Via Stein's Method , 1992 .

[16]  R. Schonmann On the Behavior of Some Cellular Automata Related to Bootstrap Percolation , 1992 .

[17]  Enrique D. Andjel Characteristic Exponents for Two-Dimensional Bootstrap Percolation , 1993 .

[18]  Thomas Mountford Critical length for semi-oriented bootstrap percolation , 1995 .

[19]  Roberto H. Schonmann,et al.  Equivalence of exponential decay rates for bootstrap percolation like cellular automata , 1995 .

[20]  J. Balogh,et al.  Random disease on the square grid , 1998 .

[21]  A. Holroyd Sharp metastability threshold for two-dimensional bootstrap percolation , 2002, math/0206132.

[22]  Béla Bollobás,et al.  Sharp thresholds in Bootstrap percolation , 2003 .

[23]  Dan Romik,et al.  Integrals, partitions, and cellular automata , 2003 .

[24]  Béla Bollobás,et al.  Bootstrap percolation on the hypercube , 2006 .

[25]  Funded in part by an Nserc Discovery Grant The Metastability Threshold for Modified Bootstrap Percolation in d Dimensions , 2006 .

[26]  Béla Bollobás The Art of Mathematics - Coffee Time in Memphis , 2006 .

[27]  Finite-Size Effects for Anisotropic Bootstrap Percolation: Logarithmic Corrections , 2007, cond-mat/0702145.

[28]  Alexander E. Holroyd,et al.  Slow convergence in bootstrap percolation. , 2007 .

[29]  B. Bollob'as,et al.  Bootstrap percolation in three dimensions , 2008, 0806.4485.

[30]  Robert Morris Minimal Percolating Sets in Bootstrap Percolation , 2009, Electron. J. Comb..

[31]  Improved bounds on metastability thresholds and probabilities for generalized bootstrap percolation , 2010, 1001.1977.

[32]  Eric Riedl,et al.  Largest Minimal Percolating Sets in Hypercubes under 2-Bootstrap Percolation , 2010, Electron. J. Comb..

[33]  H. Duminil-Copin,et al.  The sharp threshold for bootstrap percolation in all dimensions , 2010, 1010.3326.

[34]  J. Gravner,et al.  A sharper threshold for bootstrap percolation in two dimensions , 2010, 1002.3881.

[35]  Finite volume Bootstrap Percolation with balanced threshold rules on Z 2 , 2012 .

[36]  Svante Janson,et al.  Majority bootstrap percolation on the random graph G(n,p) , 2010, 1012.3535.

[37]  Michal Przykucki Maximal Percolation Time in Hypercubes Under 2-Bootstrap Percolation , 2012, Electron. J. Comb..

[38]  Eric Riedl,et al.  Largest and Smallest Minimal Percolating Sets in Trees , 2012, Electron. J. Comb..

[39]  K. Bringmann,et al.  Convolution Bootstrap Percolation Models, Markov-type Stochastic Processes, and Mock Theta Functions , 2013 .

[40]  H. Duminil-Copin,et al.  Sharp metastability threshold for an anisotropic bootstrap percolation model , 2010, 1010.4691.