Ordnungsreduktion linearer zeitinvarianter Finite-Elemente-Modelle mit multivariater polynomieller Parametrierung (Model Order Reduction of Linear Finite Element Models Parameterized by Polynomials in Several Variables)

Abstract Der vorliegende Beitrag stellt ein Verfahren zur Ordnungsreduktion linearer Gleichungssysteme vor, die durch Polynome in mehreren Variablen parametriert sind und aus der Finite-Elemente-Methode hervorgehen. Der vorgeschlagene Ansatz beruht auf multivariaten Krylov-Unterräumen und erweitert bestehende Verfahren in zweierlei Hinsicht: Erstens beinhaltet er einen neuen Algorithmus zur Berechnung einer stabilen Basis für das reduzierte System, und zweitens verallgemeinert er das Konzept der Krylov-Unterräume höherer Ordnung auf Mehrparametersysteme.

[1]  Kyle A. Gallivan,et al.  A method for generating rational interpolant reduced order models of two-parameter linear systems , 1999 .

[2]  L. Codecasa,et al.  A novel approach for generating boundary condition independent compact dynamic thermal networks of packages , 2005, IEEE Transactions on Components and Packaging Technologies.

[3]  B. Lohmann,et al.  Order reduction of large scale second-order systems using Krylov subspace methods , 2006 .

[4]  Axel Ruhe Rational Krylov sequence methods for eigenvalue computation , 1984 .

[5]  Boris Lohmann,et al.  Ordnungsreduktion mittels Krylov-Unterraummethoden (Order Reduction using Krylov Subspace Methods) , 2004 .

[6]  Roland W. Freund,et al.  Efficient linear circuit analysis by Pade´ approximation via the Lanczos process , 1994, EURO-DAC '94.

[7]  Eric James Grimme,et al.  Krylov Projection Methods for Model Reduction , 1997 .

[8]  Abdullah Atalar,et al.  Pole-zero computation in microwave circuits using multipoint Pade approximation , 1995 .

[9]  Daniel Boley Krylov space methods on state-space control models , 1994 .

[10]  Michel Nakhla,et al.  Analysis of transmission line circuits using multi-dimensional model reduction techniques , 2001 .

[11]  Eric Michielssen,et al.  Analysis of frequency selective surfaces using two-parameter generalized rational Krylov model-order reduction , 2001 .

[12]  Rodney D. Slone,et al.  Broadband model order reduction of polynomial matrix equations using single‐point well‐conditioned asymptotic waveform evaluation: derivations and theory , 2003 .

[13]  Zhaojun Bai,et al.  Dimension Reduction of Large-Scale Second-Order Dynamical Systems via a Second-Order Arnoldi Method , 2005, SIAM J. Sci. Comput..

[14]  Robert J. Lee,et al.  Applying Padé via Lanczos to the finite element method for electromagnetic radiation problems , 2000 .

[15]  Lawrence T. Pileggi,et al.  Asymptotic waveform evaluation for timing analysis , 1990, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[16]  Alain Bossavit,et al.  Edge-elements for scattering problems , 1989 .

[17]  Lawrence T. Pileggi,et al.  PRIMA: passive reduced-order interconnect macromodeling algorithm , 1997, ICCAD 1997.

[18]  Jacob K. White,et al.  A multiparameter moment-matching model-reduction approach for generating geometrically parameterized interconnect performance models , 2004, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[19]  P. Dooren,et al.  Asymptotic Waveform Evaluation via a Lanczos Method , 1994 .

[20]  Juan Zapata,et al.  Full-wave analysis of cavity-backed and probe-fed microstrip patch arrays by a hybrid mode-matching generalized scattering matrix and finite-element method , 1998 .

[21]  Jin-Fa Lee,et al.  The transfinite element method for modeling MMIC devices , 1988, 1988., IEEE MTT-S International Microwave Symposium Digest.

[22]  R. Craig,et al.  Model reduction and control of flexible structures using Krylov vectors , 1991 .

[23]  Michel S. Nakhla,et al.  Analysis of interconnect networks using complex frequency hopping (CFH) , 1995, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..