Genome-scale analyses of health-promoting bacteria: probiogenomics

The human body is colonized by an enormous population of bacteria (microbiota) that provides the host with coding capacity and metabolic activities. Among the human gut microbiota are health-promoting indigenous species (probiotic bacteria) that are commonly consumed as live dietary supplements. Recent genomics-based studies (probiogenomics) are starting to provide insights into how probiotic bacteria sense and adapt to the gastrointestinal tract environment. In this Review, we discuss the application of probiogenomics in the elucidation of the molecular basis of probiosis using the well-recognized model probiotic bacteria genera Bifidobacterium and Lactobacillus as examples.

[1]  L C Hoskins,et al.  Mucin degradation in human colon ecosystems. Evidence for the existence and role of bacterial subpopulations producing glycosidases as extracellular enzymes. , 1981, The Journal of clinical investigation.

[2]  L. Hoskins,et al.  Mucin degradation in human colon ecosystems. Isolation and properties of fecal strains that degrade ABH blood group antigens and oligosaccharides from mucin glycoproteins. , 1985, The Journal of clinical investigation.

[3]  I. Casas,et al.  Production and isolation of reuterin, a growth inhibitor produced by Lactobacillus reuteri , 1988, Antimicrobial Agents and Chemotherapy.

[4]  J. Potempa,et al.  The serpin superfamily of proteinase inhibitors: structure, function, and regulation. , 1994, The Journal of biological chemistry.

[5]  G R Gibson,et al.  Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. , 1995, The Journal of nutrition.

[6]  J. Euzéby List of Bacterial Names with Standing in Nomenclature: a folder available on the Internet. , 1997, International journal of systematic bacteriology.

[7]  W. Whitman,et al.  Prokaryotes: the unseen majority. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[8]  T Midtvedt,et al.  A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[9]  H. Harmsen,et al.  Analysis of the Fecal Microflora of Human Subjects Consuming a Probiotic Product Containing Lactobacillus rhamnosusDR20 , 2000, Applied and Environmental Microbiology.

[10]  J. Gordon,et al.  Commensal Host-Bacterial Relationships in the Gut , 2001, Science.

[11]  E. Koonin,et al.  Horizontal gene transfer in prokaryotes: quantification and classification. , 2001, Annual review of microbiology.

[12]  M. Raida,et al.  Human milk provides peptides highly stimulating the growth of bifidobacteria. , 2002, European journal of biochemistry.

[13]  Peer Bork,et al.  The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[14]  J. Gordon,et al.  How host-microbial interactions shape the nutrient environment of the mammalian intestine. , 2002, Annual review of nutrition.

[15]  M. Kleerebezem,et al.  Complete genome sequence of Lactobacillus plantarum WCFS1 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Maureen C. Kelly,et al.  Inhibition of Vaginal Lactobacilli by a Bacteriocin-Like Inhibitor Produced by Enterococcus faecium 62-6: Potential Significance for Bacterial Vaginosis , 2003, Infectious diseases in obstetrics and gynecology.

[17]  J. Doré,et al.  Alterations of the dominant faecal bacterial groups in patients with Crohn's disease of the colon , 2003, Gut.

[18]  R. Vogel,et al.  Identification of the Gene for β-Fructofuranosidase of Bifidobacterium lactis DSM10140T and Characterization of the Enzyme Expressed in Escherichia coli , 2003, Current Microbiology.

[19]  F. Guarner,et al.  Gut flora in health and disease , 2003, The Lancet.

[20]  J. Walter,et al.  Identification of Lactobacillus reuteri Genes Specifically Induced in the Mouse Gastrointestinal Tract , 2003, Applied and Environmental Microbiology.

[21]  M. Teuber,et al.  Acquired antibiotic resistance in lactic acid bacteria from food , 1999, Antonie van Leeuwenhoek.

[22]  Ting Wang,et al.  The gut microbiota as an environmental factor that regulates fat storage. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[23]  H. Kumagai,et al.  Molecular Cloning and Characterization of Bifidobacterium bifidum 1,2-α-l-Fucosidase (AfcA), a Novel Inverting Glycosidase (Glycoside Hydrolase Family 95) , 2004, Journal of bacteriology.

[24]  Rodolphe Barrangou,et al.  The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[25]  M. Kleerebezem,et al.  Identification of Lactobacillus plantarum Genes That Are Induced in the Gastrointestinal Tract of Mice , 2004, Journal of bacteriology.

[26]  M. Ventura,et al.  Insights into the taxonomy, genetics and physiology of bifidobacteria , 2004, Antonie van Leeuwenhoek.

[27]  M. Kleerebezem,et al.  The complete genomes of Lactobacillus plantarum and Lactobacillus johnsonii reveal extensive differences in chromosome organization and gene content. , 2004, Microbiology.

[28]  E. Purdom,et al.  Diversity of the Human Intestinal Microbial Flora , 2005, Science.

[29]  S. Salminen,et al.  The genomics of probiotic intestinal microorganisms , 2005, Genome Biology.

[30]  A. Mercenier,et al.  Lessons from the genomes of bifidobacteria. , 2005, FEMS microbiology reviews.

[31]  T. Hartung,et al.  Enhanced antiinflammatory capacity of a Lactobacillus plantarum mutant synthesizing modified teichoic acids. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[32]  G. Corthier,et al.  Differential Activities of Four Lactobacillus casei Promoters during Bacterial Transit through the Gastrointestinal Tracts of Human-Microbiota-Associated Mice , 2005, Applied and Environmental Microbiology.

[33]  C. Nord,et al.  Probiotics and gastrointestinal diseases , 2005, Journal of internal medicine.

[34]  J. Vincken,et al.  Type I arabinogalactan contains beta-D-Galp-(1-->3)-beta-D-Galp structural elements. , 2005, Carbohydrate research.

[35]  F. Bäckhed,et al.  Host-Bacterial Mutualism in the Human Intestine , 2005, Science.

[36]  Benjamin P. Westover,et al.  Glycan Foraging in Vivo by an Intestine-Adapted Bacterial Symbiont , 2005, Science.

[37]  D. van Sinderen,et al.  Transcriptional Regulation and Characterization of a Novel β-Fructofuranosidase-Encoding Gene from Bifidobacterium breve UCC2003 , 2005, Applied and Environmental Microbiology.

[38]  Rodolphe Barrangou,et al.  Genomic features of lactic acid bacteria effecting bioprocessing and health. , 2005, FEMS microbiology reviews.

[39]  Michiel Kleerebezem,et al.  Biodiversity-Based Identification and Functional Characterization of the Mannose-Specific Adhesin of Lactobacillus plantarum , 2005, Journal of bacteriology.

[40]  Maija Saxelin,et al.  Probiotic and other functional microbes: from markets to mechanisms. , 2005, Current opinion in biotechnology.

[41]  Souichiro Kato,et al.  Stable Coexistence of Five Bacterial Strains as a Cellulose-Degrading Community , 2005, Applied and Environmental Microbiology.

[42]  R. Barrangou,et al.  Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[43]  D. Sinderen,et al.  Getting better with bifidobacteria , 2005, Journal of applied microbiology.

[44]  J. Deutscher,et al.  Identification and Characterization of a Fructose Phosphotransferase System in Bifidobacterium breve UCC2003 , 2006, Applied and Environmental Microbiology.

[45]  E. Mardis,et al.  An obesity-associated gut microbiome with increased capacity for energy harvest , 2006, Nature.

[46]  J. Gibrat,et al.  The complete genome sequence of Lactobacillus bulgaricus reveals extensive and ongoing reductive evolution. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[47]  B. Palsson,et al.  The model organism as a system: integrating 'omics' data sets , 2006, Nature Reviews Molecular Cell Biology.

[48]  R. Ley,et al.  Ecological and Evolutionary Forces Shaping Microbial Diversity in the Human Intestine , 2006, Cell.

[49]  C. Manichanh,et al.  Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach , 2005, Gut.

[50]  M. Kleerebezem,et al.  Towards understanding molecular modes of probiotic action. , 2006, Current opinion in biotechnology.

[51]  M. Affolter,et al.  A Serpin from the Gut Bacterium Bifidobacterium longum Inhibits Eukaryotic Elastase-like Serine Proteases* , 2006, Journal of Biological Chemistry.

[52]  J. Gordon,et al.  A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[53]  M. Ventura,et al.  Analysis of bifidobacterial evolution using a multilocus approach. , 2006, International journal of systematic and evolutionary microbiology.

[54]  D. van Sinderen,et al.  Diversity of the genus Lactobacillus revealed by comparative genomics of five species. , 2006, Microbiology.

[55]  J. Gordon,et al.  Genomic and Metabolic Studies of the Impact of Probiotics on a Model Gut Symbiont and Host , 2006, PLoS biology.

[56]  J. Parkhill,et al.  Multireplicon genome architecture of Lactobacillus salivarius. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[57]  Philippe Bessières,et al.  Extensive horizontal transfer of core genome genes between two Lactobacillus species found in the gastrointestinal tract , 2007, BMC Evolutionary Biology.

[58]  Katherine H. Huang,et al.  Comparative genomics of the lactic acid bacteria , 2006, Proceedings of the National Academy of Sciences.

[59]  D. van Sinderen,et al.  Screening for and Identification of Starch-, Amylopectin-, and Pullulan-Degrading Activities in Bifidobacterial Strains , 2006, Applied and Environmental Microbiology.

[60]  D. Sinderen,et al.  Genomics as a means to understand bacterial phylogeny and ecological adaptation: the case of bifidobacteria , 2007, Antonie van Leeuwenhoek.

[61]  M. Kleerebezem,et al.  Lactobacillus plantarum gene clusters encoding putative cell-surface protein complexes for carbohydrate utilization are conserved in specific gram-positive bacteria , 2006, BMC Genomics.

[62]  N. Pace,et al.  Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases , 2007, Proceedings of the National Academy of Sciences.

[63]  B. Berger,et al.  Similarity and Differences in the Lactobacillus acidophilus Group Identified by Polyphasic Analysis and Comparative Genomics , 2006, Journal of bacteriology.

[64]  E. Koonin,et al.  Evolutionary Genomics of Lactic Acid Bacteria , 2006, Journal of bacteriology.

[65]  B. Berger,et al.  Gene Expression of Commensal Lactobacillus johnsonii Strain NCC533 during In Vitro Growth and in the Murine Gut , 2007, Journal of bacteriology.

[66]  C. Bulpitt,et al.  Use of probiotic Lactobacillus preparation to prevent diarrhoea associated with antibiotics: randomised double blind placebo controlled trial , 2007, BMJ : British Medical Journal.

[67]  P. B. Lynch,et al.  A Five-Strain Probiotic Combination Reduces Pathogen Shedding and Alleviates Disease Signs in Pigs Challenged with Salmonella enterica Serovar Typhimurium , 2007, Applied and Environmental Microbiology.

[68]  W. M. Vos,et al.  The complete coenzyme B 12 biosynthesis gene cluster of Lactobacillus reuteri CRL 1098 , 2007 .

[69]  R. Barrangou,et al.  CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes , 2007, Science.

[70]  Mark J. Pallen,et al.  Bacterial pathogenomics , 2007, Nature.

[71]  Hauke Smidt,et al.  Diversity of the human gastrointestinal tract microbiota revisited. , 2007, Environmental microbiology.

[72]  J. Corander,et al.  The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects. , 2007, Gastroenterology.

[73]  Ju-Hoon Lee,et al.  Comparative genomic analysis of the gut bacterium Bifidobacterium longum reveals loci susceptible to deletion during pure culture growth , 2008, BMC Genomics.

[74]  D. Rasko,et al.  Defining Genomic Islands and Uropathogen-Specific Genes in Uropathogenic Escherichia coli , 2007, Journal of bacteriology.

[75]  C. Hill,et al.  Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118 , 2007, Proceedings of the National Academy of Sciences.

[76]  F. Shanahan,et al.  Mechanisms of Action of Probiotics in Intestinal Diseases , 2006, TheScientificWorldJournal.

[77]  A. Tauch,et al.  Genomics of Actinobacteria: Tracing the Evolutionary History of an Ancient Phylum , 2007, Microbiology and Molecular Biology Reviews.

[78]  R. Knight,et al.  The Human Microbiome Project , 2007, Nature.

[79]  D. van Sinderen,et al.  Lactobacillus phylogenomics--towards a reclassification of the genus. , 2008, International journal of systematic and evolutionary microbiology.

[80]  A. Margolles,et al.  Mucin Degradation by Bifidobacterium Strains Isolated from the Human Intestinal Microbiota , 2008, Applied and Environmental Microbiology.

[81]  B. White,et al.  Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis , 2008, Nature Reviews Microbiology.

[82]  M. Prentice,et al.  Lactobacillus reuteri DSM 20016 Produces Cobalamin-Dependent Diol Dehydratase in Metabolosomes and Metabolizes 1,2-Propanediol by Disproportionation , 2008, Journal of bacteriology.

[83]  A. Sangrador-Vegas,et al.  Genome Sequence of Lactobacillus helveticus, an Organism Distinguished by Selective Gene Loss and Insertion Sequence Element Expansion , 2007, Journal of bacteriology.

[84]  W. D. de Vos,et al.  The complete coenzyme B12 biosynthesis gene cluster of Lactobacillus reuteri CRL1098. , 2008, Microbiology.

[85]  J. A. Aas,et al.  Bacteria of Dental Caries in Primary and Permanent Teeth in Children and Young Adults , 2008, Journal of Clinical Microbiology.

[86]  D. Sinderen,et al.  Human gut microbiota and bifidobacteria: from composition to functionality , 2008, Antonie van Leeuwenhoek.

[87]  J. Vincken,et al.  Bifidobacterium carbohydrases-their role in breakdown and synthesis of (potential) prebiotics. , 2008, Molecular nutrition & food research.

[88]  R. Knight,et al.  Evolution of Mammals and Their Gut Microbes , 2008, Science.

[89]  B. Berger,et al.  Identification of Genes Associated with the Long-Gut-Persistence Phenotype of the Probiotic Lactobacillus johnsonii Strain NCC533 Using a Combination of Genomics and Transcriptome Analysis , 2008, Journal of Bacteriology.

[90]  W. D. de Vos,et al.  Differential Transcriptional Response of Bifidobacterium longum to Human Milk, Formula Milk, and Galactooligosaccharide , 2008, Applied and Environmental Microbiology.

[91]  M. Hattori,et al.  Comparative Genome Analysis of Lactobacillus reuteri and Lactobacillus fermentum Reveal a Genomic Island for Reuterin and Cobalamin Production , 2008, DNA research : an international journal for rapid publication of reports on genes and genomes.

[92]  T. Piche The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects. , 2008 .

[93]  Elaine Holmes,et al.  Probiotic Modulation of Symbiotic Gut Microbial–host Metabolic Interactions in a Humanized Microbiome Mouse Model , 2022 .

[94]  T. Klaenhammer,et al.  Genomics of lactic acid bacteria. , 2009, FEMS microbiology letters.

[95]  G. A. Moore,et al.  randomised double blind placebo controlled trial , 2022 .