Exponential convergence of the hp virtual element method in presence of corner singularities
暂无分享,去创建一个
Lorenzo Mascotto | Lourenço Beirão da Veiga | Alexey Chernov | Alessandro Russo | A. Chernov | A. Russo | L. Mascotto | L. Veiga | L. Mascotto
[1] F. Brezzi,et al. Basic principles of Virtual Element Methods , 2013 .
[2] Konstantin Lipnikov,et al. Convergence of the Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes , 2005, SIAM J. Numer. Anal..
[3] Franco Brezzi,et al. The Hitchhiker's Guide to the Virtual Element Method , 2014 .
[4] P. F. Antonietti,et al. A multigrid algorithm for the $p$-version of the Virtual Element Method , 2017, 1703.02285.
[5] Gabriel N. Gatica,et al. A mixed virtual element method for the pseudostress–velocity formulation of the Stokes problem , 2017 .
[6] Ralf Hiptmair,et al. Approximation by harmonic polynomials in star-shaped domains and exponential convergence of Trefftz hp-DGFEM , 2012 .
[7] Glaucio H. Paulino,et al. Polygonal finite elements for topology optimization: A unifying paradigm , 2010 .
[8] L. Beirao da Veiga,et al. Divergence free Virtual Elements for the Stokes problem on polygonal meshes , 2015, 1510.01655.
[9] Raytcho D. Lazarov,et al. Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..
[10] Gianmarco Manzini,et al. Virtual Element Methods for Elliptic Problems on Polygonal Meshes , 2017 .
[11] Alessandro Russo,et al. Mixed Virtual Element Methods for general second order elliptic problems on polygonal meshes , 2014, 1506.07328.
[12] Franco Brezzi,et al. Virtual Element Methods for plate bending problems , 2013 .
[13] C. Schwab. P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .
[14] P. Houston,et al. hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes , 2017 .
[15] Felipe Lepe,et al. A Virtual Element Method for the Steklov Eigenvalue Problem Allowing Small Edges , 2015, Journal of Scientific Computing.
[16] Emmanuil H. Georgoulis,et al. Inverse-type estimates on hp-finite element spaces and applications , 2008, Math. Comput..
[17] Glaucio H. Paulino,et al. On the Virtual Element Method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes , 2014 .
[18] Chandrajit L. Bajaj,et al. Error estimates for generalized barycentric interpolation , 2010, Adv. Comput. Math..
[19] Alexandre Ern,et al. Hybrid high-order methods for variable-diffusion problems on general meshes , 2015 .
[20] Ben-yu Guo,et al. Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces , 2004, J. Approx. Theory.
[21] H. Triebel. Interpolation Theory, Function Spaces, Differential Operators , 1978 .
[22] L. Tartar. An Introduction to Sobolev Spaces and Interpolation Spaces , 2007 .
[23] Ivo Babuška,et al. The optimal convergence rate of the p-version of the finite element method , 1987 .
[24] Jens Markus Melenk,et al. HP-INTERPOLATION OF NON-SMOOTH FUNCTIONS , 2003 .
[25] Lorenzo Mascotto,et al. The harmonic virtual element method: stabilization and exponential convergence for the Laplace problem on polygonal domains , 2017, IMA Journal of Numerical Analysis.
[26] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[27] N. Sukumar,et al. Conforming polygonal finite elements , 2004 .
[28] Jens Markus Melenk,et al. hp-Interpolation of Nonsmooth Functions and an Application to hp-A posteriori Error Estimation , 2005, SIAM J. Numer. Anal..
[29] Stefano Berrone,et al. A hybrid mortar virtual element method for discrete fracture network simulations , 2016, J. Comput. Phys..
[30] Peter Wriggers,et al. A virtual element method for contact , 2016 .
[31] Lorenzo Mascotto,et al. Exponential convergence of the hp Virtual Element Method with corner singularities , 2016, 1611.10165.
[32] Ilaria Perugia,et al. A Plane Wave Virtual Element Method for the Helmholtz Problem , 2015, 1505.04965.
[33] Lourenco Beirao da Veiga,et al. Stability Analysis for the Virtual Element Method , 2016, 1607.05988.
[34] Jie Shen,et al. Optimal error estimates in Jacobi-weighted Sobolev spaces for polynomial approximations on the triangle , 2010, Math. Comput..
[35] Stefano Berrone,et al. The virtual element method for discrete fracture network simulations , 2014 .
[36] Ivo Babuška,et al. Regularity of the solution of elliptic problems with piecewise analytic data, II: the trace spaces and application to the boundary value problems with nonhomogeneous boundary conditions , 1989 .
[37] Ivonne Sgura,et al. Virtual Element Method for the Laplace-Beltrami equation on surfaces , 2016, 1612.02369.
[38] Moshe Dubiner. Spectral methods on triangles and other domains , 1991 .
[39] B. Guo,et al. REGULARITY OF THE SOLUTION OF ELLIPTIC PROBLEMS WITH PIECEWISE ANALYTIC DATA , Ih THE TRACE SPACES AND APPLICATION TO THE BOUNDARY VALUE PROBLEMS WITH NONHOMOGENEOUS BOUNDARY CONDITIONS , 2022 .
[40] Ivo Babuška,et al. Regularity of the solution of elliptic problems with piecewise analytic data. Part 1. Boundary value problems for linear elliptic equation of second order , 1988 .
[41] P. Tesini,et al. On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations , 2012, J. Comput. Phys..
[42] Gianmarco Manzini,et al. Conforming and nonconforming virtual element methods for elliptic problems , 2015, 1507.03543.
[43] Gianmarco Manzini,et al. The Mimetic Finite Difference Method for Elliptic Problems , 2014 .
[44] Lorenzo Mascotto,et al. Ill‐conditioning in the virtual element method: Stabilizations and bases , 2017, 1705.10581.
[45] Ahmed Alsaedi,et al. Equivalent projectors for virtual element methods , 2013, Comput. Math. Appl..
[46] L. B. D. Veiga,et al. A virtual element method with arbitrary regularity , 2014 .
[47] Sergej Rjasanow,et al. Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Higher Order Bem-based Fem on Polygonal Meshes Higher Order Bem-based Fem on Polygonal Meshes Higher Order Bem-based Fem on Polygonal Meshes , 2022 .
[48] T. Koornwinder. Two-Variable Analogues of the Classical Orthogonal Polynomials , 1975 .
[49] Lourenço Beirão da Veiga,et al. Virtual Elements for Linear Elasticity Problems , 2013, SIAM J. Numer. Anal..
[50] Lourenço Beirão da Veiga,et al. A Stream Virtual Element Formulation of the Stokes Problem on Polygonal Meshes , 2014, SIAM J. Numer. Anal..
[51] Ivo Babuška,et al. The h-p version of the finite element method , 1986 .
[52] L. Beirao da Veiga,et al. Basic principles of hp virtual elements on quasiuniform meshes , 2015, 1508.02242.
[53] Yvon Maday,et al. Polynomial interpolation results in Sobolev spaces , 1992 .