On how the computational paradigm can help us to model and interpret the neural function

Virtually from its origins, with Alan Turing and W.S. McCulloch’s formulations, the use of the computational paradigm (CP) as a conceptual and theoretical framework to help to explain Neurophysiology and Cognition has aroused controversy. Some of the objections raised, relating to its constitutive and formal limitations, still prevail. We believe that others stem from the assumption that its objectives are different from those of a methodological approach to the problem of neural modeling.In this work we start from the hypothesis that it is useful to look at the neuronal circuits assuming that they are the neurophysiological support of a calculus, whose full description requires considering, at least, three levels of organization: circuits and mechanisms, neurophysiological symbols and knowledge and emerging behavior. We also stress the figure of the external observer and the need to distinguish between two description domains in each level: the level’s own domain and the domain of the external observer. Finally, we describe a procedure for using the computational paradigm qualitatively in order to try to do “reverse neurophysiology”, drawing on two abstraction processes that link the calculus at signal level with cognition. We end by considering the real limitations (constitutive) and apparent (wrong objectives) of the CP and its integrating and non-exclusive nature.

[1]  William J. Clancey,et al.  Conceptual Coordination: How the Mind Orders Experience in Time , 1999 .

[2]  W. Pitts,et al.  A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.

[3]  Francisco Várela G. Francisco,et al.  E L ÁRBOL DEL CONOCIMIENTO: Las bases biológicas del entendimiento humano , 1990 .

[4]  T. S. Kuhn,et al.  La estructura de las revoluciones científicas , 2002 .

[5]  Eaton Peabody,et al.  Symbols and dynamics in the brain , 2000 .

[6]  Charles Wallis,et al.  Computation and cognition , 2003, J. Exp. Theor. Artif. Intell..

[7]  P. Grobstein Strategies for analyzing complex organization in the nervous system: I.: lesion experiments , 1993 .

[8]  W. Pitts,et al.  What the Frog's Eye Tells the Frog's Brain , 1959, Proceedings of the IRE.

[9]  Guus Schreiber,et al.  Knowledge Engineering and Management: The CommonKADS Methodology , 1999 .

[10]  José Mira,et al.  Where is knowledge in robotics? some methodological issues on symbolic and connectionist perspectives of AI , 2003 .

[11]  F. G. Worden,et al.  The neurosciences : fourth study program , 1979 .

[12]  John R. Searle,et al.  Minds, brains, and programs , 1980, Behavioral and Brain Sciences.

[13]  J. Gibson The Ecological Approach to Visual Perception , 1979 .

[14]  Stephen Jay Gould,et al.  An Urchin in the Storm , 1987 .

[15]  F. Varela Principles of biological autonomy , 1979 .

[16]  Bruno A. Olshausen,et al.  Book Review , 2003, Journal of Cognitive Neuroscience.

[17]  W. McCulloch,et al.  Embodiments of Mind , 1966 .

[18]  Eric L. Schwartz,et al.  Computational Neuroscience , 1993, Neuromethods.

[19]  John McCarthy,et al.  What Computers Still Can't Do , 1996, Artif. Intell..

[20]  R. Moreno-Díaz,et al.  Deterministic and probabilistic neural nets with loops , 1971 .

[21]  A. E. Delgado,et al.  Neural modeling in cerebral dynamics. , 2003, Bio Systems.

[22]  W. Precht The synaptic organization of the brain G.M. Shepherd, Oxford University Press (1975). 364 pp., £3.80 (paperback) , 1976, Neuroscience.

[23]  Allen Newell,et al.  The Knowledge Level , 1989, Artif. Intell..

[24]  W. H. F. Barnes The Nature of Explanation , 1944, Nature.

[25]  Alex M. Andrew,et al.  Computation and Cognition: Towards A Foundation for Cognitive Science, by Zenon W. Pylyshyn, MIT Press, Cambridge, Mass., xxiii + 292 pp., £26.15 , 1985, Robotica.

[26]  Humberto R. Maturana,et al.  The organization of the living: A theory of the living organization , 1975 .

[27]  Humberto R. Maturana,et al.  Ontology of Observing : The Biological Foundations of Self-Consciousness and of The Physical Domain of Existence , 2006 .

[28]  Allen Newell,et al.  Computer science as empirical inquiry: symbols and search , 1976, CACM.

[29]  Rodney A. Brooks,et al.  Intelligence Without Reason , 1991, IJCAI.

[30]  H H Pattee,et al.  The physics of symbols: bridging the epistemic cut. , 2001, Bio Systems.

[31]  J. von Neumann,et al.  Probabilistic Logic and the Synthesis of Reliable Organisms from Unreliable Components , 1956 .

[32]  K. J. Craik,et al.  The nature of explanation , 1944 .

[33]  R. Navarro Kuhn, Thomas. La Estructura de las Revoluciones Científicas. España: Fondo de Cultura Económica, 1975 , 2008 .

[34]  Maria Dolores Lopez Justicia La percepcion visual , 2004 .

[35]  Jerry A. Fodor,et al.  El lenguaje del pensamiento , 1985 .

[36]  José Mira,et al.  Aspectos básicos de la inteligencia artificial , 1995 .

[37]  Zenon W. Pylyshyn,et al.  On "Computation and Cognition: Toward a Foundation of Cognitive Science". A Response to the Reviews by A. K. Mackworth and M. J. Stefik , 1989, Artif. Intell..

[38]  M. Alexander,et al.  Principles of Neural Science , 1981 .

[39]  S C Kleene,et al.  Representation of Events in Nerve Nets and Finite Automata , 1951 .

[40]  Antonio R. Damasio,et al.  Cerebro y lenguaje , 1992 .

[41]  Hubert L. Dreyfus,et al.  What computers still can't do - a critique of artificial reason , 1992 .