Natural Homology

We propose a notion of homology for directed algebraic topology, based on so-called natural systems of abelian groups, and which we call natural homology. As we show, natural homology has many desirable properties: it is invariant under isomorphisms of directed spaces, it is invariant under refinement subdivision, and it is computable on cubical complexes.

[1]  Eric Goubault,et al.  A Geometric View of Partial Order Reduction , 2013, MFPS.

[2]  Francis Sergeraert,et al.  The Computability Problem in Algebraic Topology , 1994 .

[3]  Gunnar E. Carlsson,et al.  Topology and data , 2009 .

[4]  Glynn Winskel,et al.  Bisimulation from Open Maps , 1994, Inf. Comput..

[5]  Arie Shoshani,et al.  System Deadlocks , 1971, CSUR.

[6]  M. Raussen Trace spaces in a pre-cubical complex , 2009 .

[7]  K. Mischaikow,et al.  Computing Homology , 2001 .

[8]  É. Goubault Geometrie du parallelisme , 1995 .

[9]  M. Grandis Directed Algebraic Topology: Models of Non-Reversible Worlds , 2009 .

[10]  M. Grandis Inequilogical spaces, directed homology and noncommutative geometry , 2004 .

[11]  Lisbeth Fajstrup,et al.  Dipaths and dihomotopies in a cubical complex , 2005, Adv. Appl. Math..

[12]  R. J. van Glabbeek,et al.  Comparative Concurrency Semantics and Refinement of Actions , 1996 .

[13]  Martin Raußen Invariants of Directed Spaces , 2007, Appl. Categorical Struct..

[14]  M. Raussen Simplicial models for trace spaces II: General higher dimensional automata , 2012 .

[15]  Brian Campbell,et al.  Amortised Memory Analysis Using the Depth of Data Structures , 2009, ESOP.

[16]  ON EXACTNESS OF LONG SEQUENCES OF HOMOLOGY SEMIMODULES , 2006, math/0610117.

[17]  Ulrich Fahrenberg,et al.  Directed Homology , 2004, CMCIM/GETCO@CONCUR.

[18]  Alan Bundy,et al.  Constructing Induction Rules for Deductive Synthesis Proofs , 2006, CLASE.

[19]  Vaughan R. Pratt,et al.  Modeling concurrency with geometry , 1991, POPL '91.

[20]  Eric Goubault,et al.  Geometry and concurrency: a user's guide , 2000, Mathematical Structures in Computer Science.

[21]  Eric Goubault,et al.  A Practical Application of Geometric Semantics to Static Analysis of Concurrent Programs , 2005, CONCUR.

[22]  Sanjeevi Krishnan,et al.  Flow-Cut Dualities for Sheaves on Graphs , 2014, 1409.6712.

[23]  Eric Goubault,et al.  Trace Spaces: An Efficient New Technique for State-Space Reduction , 2012, ESOP.

[24]  Günther Wirsching,et al.  Cohomology of small categories , 1985 .