Reaction mechanism studies towards effective fabrication of lithium-rich anti-perovskites Li3OX (X = Cl, Br)

[1]  Yusheng Zhao,et al.  Critical phenomena and phase transition of perovskite — data for NaMgF3 perovskite. Part II , 1993 .

[2]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[3]  M. Armand,et al.  Building better batteries , 2008, Nature.

[4]  Ji‐Guang Zhang,et al.  Lithium metal anodes for rechargeable batteries , 2014 .

[5]  Kunlun Hong,et al.  Anomalous high ionic conductivity of nanoporous β-Li3PS4. , 2013, Journal of the American Chemical Society.

[6]  Yusheng Zhao,et al.  Experimental visualization of lithium conduction pathways in garnet-type , 2012 .

[7]  J. Goodenough Challenges for Rechargeable Li Batteries , 2010 .

[8]  L. Daemen,et al.  High pressure-high temperature synthesis of lithium-rich Li3O(Cl, Br) and Li3 − xCax/2OCl anti-perovskite halides , 2014 .

[9]  John B Goodenough,et al.  The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.

[10]  P. Bruce,et al.  The A‐C Conductivity of Polycrystalline LISICON, Li2 + 2x Zn1 − x GeO4, and a Model for Intergranular Constriction Resistances , 1983 .

[11]  Piercarlo Mustarelli,et al.  Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. , 2011, Chemical Society reviews.

[12]  L. Daemen,et al.  Superionic conductivity in lithium-rich anti-perovskites. , 2012, Journal of the American Chemical Society.

[13]  Ji-Won Choi,et al.  Issue and challenges facing rechargeable thin film lithium batteries , 2008 .

[14]  D. Aurbach,et al.  A review of advanced and practical lithium battery materials , 2011 .

[15]  M. Jansen,et al.  High lithium ionic conductivity in the lithium halide hydrates Li3-n(OHn)Cl (0.83 < or = n < or = 2) and Li3-n(OHn)Br (1 < or = n < or = 2) at ambient temperatures. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[16]  Venkataraman Thangadurai,et al.  Fast Lithium Ion Conduction in Garnet‐Type Li7La3Zr2O12 , 2007 .

[17]  B. O. Fowler Infrared studies of apatites. I. Vibrational assignments for calcium, strontium, and barium hydroxyapatites utilizing isotopic substitution , 1974 .

[18]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[19]  Anton Van der Ven,et al.  Phase Stability and Transport Mechanisms in Antiperovskite Li3OCl and Li3OBr Superionic Conductors , 2013 .

[20]  M. Wakihara Recent developments in lithium ion batteries , 2001 .

[21]  H. Hong,et al.  Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors☆ , 1978 .

[22]  X. Lü,et al.  Li-rich anti-perovskite Li3OCl films with enhanced ionic conductivity. , 2014, Chemical communications.

[23]  John B. Goodenough,et al.  Fast Na+-ion transport in skeleton structures , 1976 .

[24]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[25]  Yi Zhang,et al.  Ab initio study of the stabilities of and mechanism of superionic transport in lithium-rich antiperovskites , 2013 .

[26]  Ozan Toprakci,et al.  A review of recent developments in membrane separators for rechargeable lithium-ion batteries , 2014 .

[27]  K. Nakamoto Infrared and Raman Spectra of Inorganic and Coordination Compounds , 1978 .