Kruskal's theorem

This is just a short proof of Kruskal's theorem regarding uniqueness of expressions for tensors, phrased in geometric language.

[1]  Enno Ohlebusch A uniform framework for term and graph rewriting applied to combined systems , 2000, Inf. Process. Lett..

[2]  Danny De Schreye,et al.  Constraint-based termination analysis of logic programs , 1999, TOPL.

[3]  G. Huet,et al.  Equations and rewrite rules: a survey , 1980 .

[4]  Toshiyuki Yamada,et al.  Confluence and Termination of Simply Typed Term Rewriting Systems , 2001, RTA.

[5]  M. Schönfinkel Über die Bausteine der mathematischen Logik , 1924 .

[6]  Azuma Ohuchi,et al.  Modularity in Noncopying Term Rewriting , 1995, Theor. Comput. Sci..

[7]  Aart Middeldorp Modular Aspects of Properties of Term Rewriting Systems Related to Normal Forms , 1989, RTA.

[8]  Thomas Arts System Description: The Dependency Pair Method , 2000, RTA.

[9]  Jean-Pierre Jouannaud,et al.  Problems in Rewriting III , 1995, RTA.

[10]  Aart Middeldorp,et al.  Modular Properties of Conditional Term Rewriting Systems , 1993, Inf. Comput..

[11]  Aart Middeldorp,et al.  A sufficient condition for the termination of the direct sum of term rewriting systems , 1989, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science.

[12]  Max Dauchet,et al.  Simulation of Turing Machines by a Regular Rewrite Rule , 1992, Theor. Comput. Sci..

[13]  M.R.K. Kr ishna Rao,et al.  Modular Proofs for Completeness of Hierarchical Term Rewriting Systems , 1995, Theor. Comput. Sci..

[14]  Stéphane Kaplan,et al.  Simplifying Conditional Term Rewriting Systems: Unification, Termination and Confluence , 1987, J. Symb. Comput..

[15]  Hans Zantema,et al.  Termination of Term Rewriting by Semantic Labelling , 1995, Fundam. Informaticae.

[16]  Nachum Dershowitz,et al.  Natural Termination , 1995, Theor. Comput. Sci..

[17]  Jean-Pierre Jouannaud,et al.  Modular Termination of Term Rewriting Systems Revisited , 1994, COMPASS/ADT.

[18]  Hendrik Pieter Barendregt,et al.  Termination for the Direct Sum of left-Linear Term Rewriting Systems -Preliminary Draft- , 1989, RTA.

[19]  Jan A. Bergstra,et al.  On Specifying Sets of Integers , 1984, J. Inf. Process. Cybern..

[20]  Enno Ohlebusch,et al.  Relative Undecidability in Term Rewriting: I. The Termination Hierarchy , 1996, Inf. Comput..

[21]  J. Avenhaus,et al.  Canonical Conditional Rewrite Systems Containing Extra Variables , 1993 .

[22]  C. Nash-Williams On well-quasi-ordering infinite trees , 1963, Mathematical Proceedings of the Cambridge Philosophical Society.

[23]  Jeremy Dick,et al.  Automating the Knuth Bendix ordering , 1990, Acta Informatica.

[24]  Enno Ohlebusch,et al.  Hierarchical termination revisited , 2002, Inf. Process. Lett..

[25]  Hans Zantema,et al.  Non-looping rewriting , 1996 .

[26]  Masahito Kurihara,et al.  Modular Term Rewriting Systems and the Termination , 1990, Inf. Process. Lett..

[27]  Hans Zantema,et al.  Transforming Termination by Self-Labelling , 1996, CADE.

[28]  Massimo Marchiori Bubbles in Modularity , 1998, Theor. Comput. Sci..

[29]  Enno Ohlebusch,et al.  Combinations of Simplifying Conditional Term Rewriting Systems , 1992, CTRS.

[30]  John Wylie Lloyd,et al.  Foundations of Logic Programming , 1987, Symbolic Computation.

[31]  Alfons Geser On normalizing, non-terminating one-rule string rewriting systems , 2000, Theor. Comput. Sci..

[32]  Krzysztof R. Apt,et al.  From logic programming to Prolog , 1996, Prentice Hall International series in computer science.

[33]  Massimo Marchiori On the Expressive Power of Rewriting , 1997, FSTTCS.

[34]  Jean-Pierre Jouannaud,et al.  Termination of a Set of Rules Modulo a Set of Equations , 1984, CADE.

[35]  A needed narrowing strategy , 2000, JACM.

[36]  A. Church The calculi of lambda-conversion , 1941 .

[37]  Enno Ohlebusch,et al.  Modular Properties of Composable Term Rewriting Systems , 1995, J. Symb. Comput..

[38]  Thérèse Hardin,et al.  Proof of termination of the rewriting system subst on CCL , 1986, Theor. Comput. Sci..

[39]  Jan A. Bergstra,et al.  Conditional Rewrite Rules: Confluence and Termination , 1986, J. Comput. Syst. Sci..

[40]  M. R. K. Krishna Rao Simple Termination of Hierarchical Combinations of Term Rewriting Systems , 1994, TACS.

[41]  Alfons Geser,et al.  Omega-Termination is Undecidable for Totally Terminating Term Rewriting Systems , 1997, J. Symb. Comput..

[42]  Jürgen Giesl,et al.  Automatically Proving Termination Where Simplification Orderings Fail , 1997, TAPSOFT.

[43]  Paliath Narendran,et al.  On Recursive Path Ordering , 1985, Theor. Comput. Sci..

[44]  Yoshihito Toyama,et al.  Modularity of Confluence: A Simplified Proof , 1994, Inf. Process. Lett..

[45]  Taro Suzuki,et al.  Level-Confluence of Conditional Rewrite Systems with Extra Variables in Right-Hand Sides , 1995, RTA.

[46]  Nachum Dershowitz,et al.  A Rationale for Conditional Equational Programming , 1990, Theor. Comput. Sci..

[47]  Maria da Conceição Fernández Ferreira Termination of term rewriting : well-foundedness, totality and transformations , 1995 .

[48]  Enno Ohlebusch,et al.  TALP: A Tool for the Termination Analysis of Logic Programs , 2000, RTA.

[49]  Jan Maluszynski,et al.  AND-Parallelism with Intelligent Backtracking for Annotated Logic Programs , 1985, SLP.

[50]  Deepak Kapur,et al.  A Transformational Methodology for Proving Termination of Logic Programs , 1991, CSL.

[51]  Yoshihito Toyama,et al.  Persistency of Confluence , 1997, J. Univers. Comput. Sci..

[52]  Mario Rodríguez-Artalejo,et al.  Denotational Versus Declarative Semantics for Functional Programming , 1991, CSL.

[53]  Dino Pedreschi,et al.  Modular termination proofs for logic and pure PROLOG programs , 1993 .

[54]  Nachum Dershowitz,et al.  Orderings for term-rewriting systems , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[55]  Sandro Etalle,et al.  On the Unification Free Prolog Programs , 1993, MFCS.

[56]  Joachim Steinbach,et al.  Simplification Orderings: Histrory of Results , 1995, Fundam. Informaticae.

[57]  Hoon Hong,et al.  Testing Positiveness of Polynomials , 1998, Journal of Automated Reasoning.

[58]  Alain Colmerauer,et al.  Constraint logic programming: selected research , 1993 .

[59]  Nachum Dershowitz,et al.  A Note on Simplification Orderings , 1979, Inf. Process. Lett..

[60]  Jürgen Giesl,et al.  Termination of term rewriting using dependency pairs , 2000, Theor. Comput. Sci..

[61]  Xavier Urbain,et al.  Automated Incremental Termination Proofs for Hierarchically Defined Term Rewriting Systems , 2001, IJCAR.

[62]  Jaco van de Pol,et al.  Modularity in many-sorted term rewriting systems , 1992 .

[63]  Enno Ohlebusch,et al.  Modular Properties of Constructor-Sharing Conditional Term Rewriting Systems , 1994, CTRS.

[64]  Hans Zantema,et al.  Termination of logic programs via labelled term rewrite systems , 1994 .

[65]  Tobias Nipkow,et al.  Term rewriting and all that , 1998 .

[66]  Friedrich Otto,et al.  String-Rewriting Systems , 1993, Text and Monographs in Computer Science.

[67]  Nachum Dershowitz,et al.  Canonical Conditional Rewrite Systems , 1988, CADE.

[68]  Enno Ohlebusch,et al.  Modularity of Termination for Disjoint Term Graph Rewrite Systems: A Simple Proof , 1998, Bull. EATCS.

[69]  Marko C. J. D. van Eekelen,et al.  Term Graph Rewriting , 1987, PARLE.

[70]  John Staples,et al.  Computation on Graph-Like Expressions , 1980, Theor. Comput. Sci..

[71]  Zoltan Somogyi,et al.  Termination Analysis for Mercury , 1997, SAS.

[72]  Massimo Marchiori Logic Programs as term Rewriting Systems , 1994, ALP.

[73]  John Staples Church-Rosser theorems for replacement systems , 1975 .

[74]  M. R. K. Krishna Rao,et al.  Modular Aspects of Term Graph Rewriting , 1998, Theor. Comput. Sci..

[75]  Claude Marché,et al.  CiME: Completion Modulo E , 1996, RTA.

[76]  Emil L. Post A variant of a recursively unsolvable problem , 1946 .

[77]  Christoph Walther,et al.  On Proving the Termination of Algorithms by Machine , 1994, Artif. Intell..

[78]  Jean-Pierre Jouannaud,et al.  Reductive conditional term rewriting systems , 1987, Formal Description of Programming Concepts.

[79]  Krzysztof R. Apt,et al.  On the occur-check-free PROLOG programs , 1994, TOPL.

[80]  Hans Zantema,et al.  Total termination of term rewriting , 1993, Applicable Algebra in Engineering, Communication and Computing.

[81]  David A. Plaisted,et al.  The Undecidability of Self-Embedding for Term Rewriting Systems , 1985, Inf. Process. Lett..

[82]  J. Kruskal Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics , 1977 .

[83]  Enno Ohlebusch,et al.  Transforming Conditional Rewrite Systems with Extra Variables into Unconditional Systems , 1999, LPAR.

[84]  Vincent van Oostrom,et al.  Confluence by Decreasing Diagrams , 1994, Theor. Comput. Sci..

[85]  Yoshihito Toyama,et al.  On Composable Properties of Term Rewriting Systems , 1997, ALP/HOA.

[86]  Graham Higman,et al.  Ordering by Divisibility in Abstract Algebras , 1952 .

[87]  Stéphane Kaplan,et al.  Conditional Rewrite Rules , 1984, Theor. Comput. Sci..

[88]  Yuri V. Matiyasevich,et al.  Decision problems for semi-Thue systems with a few rules , 2005, Theor. Comput. Sci..

[89]  Harald Ganzinger,et al.  Order-Sorted Completion: The Many-Sorted Way , 1991, Theor. Comput. Sci..

[90]  Nachum Dershowitz,et al.  Termination of Rewriting , 1987, J. Symb. Comput..

[91]  Yoshihito Toyama,et al.  Counterexamples to Termination for the Direct Sum of Term Rewriting Systems , 1987, Inf. Process. Lett..

[92]  Bruno Courcelle,et al.  Recursive Applicative Program Schemes , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[93]  Haskell B. Curry,et al.  Combinatory Logic, Volume I , 1959 .

[94]  Jean-Pierre Jouannaud,et al.  Rewrite Systems , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[95]  Zohar Manna,et al.  Proving termination with multiset orderings , 1979, CACM.

[96]  Bernhard Gramlich,et al.  Generalized sufficient conditions for modular termination of rewriting , 1992, Applicable Algebra in Engineering, Communication and Computing.

[97]  Hans Zantema,et al.  Termination of Term Rewriting: Interpretation and Type Elimination , 1994, J. Symb. Comput..

[98]  Massimo Marchiori,et al.  Unravelings and Ultra-properties , 1996, ALP.

[99]  Nachum Dershowitz Termination of Linear Rewriting Systems (Preliminary Version) , 1981, ICALP.

[100]  Jan Willem Klop,et al.  Term Rewriting Systems: From Church-Rosser to Knuth-Bendix and Beyond , 1990, ICALP.

[101]  Aart Middeldorp,et al.  Completeness results for basic narrowing , 1994, Applicable Algebra in Engineering, Communication and Computing.

[102]  Enno Ohlebusch Termination is not Modular for Confluent Variable-Preserving Term Rewriting Systems , 1995, Inf. Process. Lett..

[103]  Albert Rubio,et al.  Extension Orderings , 1995, ICALP.

[104]  Paliath Narendran,et al.  On Ground-Confluence of Term Rewriting Systems , 1990, Inf. Comput..

[105]  Azuma Ohuchi,et al.  Decomposable Termination of Composable Term Rewriting Systems , 1995, IEICE Trans. Inf. Syst..

[106]  Harald Ganzinger,et al.  Termination Proofs of Well-Moded Logic Programs via Conditional Rewrite Systems , 1992, CTRS.

[107]  Zena M. Ariola,et al.  Bisimilarity in Term Graph Rewriting , 2000, Inf. Comput..

[108]  Pierre Lescanne,et al.  On Termination of One Rule Rewrite Systems , 1994, Theor. Comput. Sci..

[109]  Enno Ohlebusch,et al.  Implementing conditional term rewriting by graph rewriting , 2001, Theor. Comput. Sci..

[110]  Jan Willem Klop,et al.  On the adequacy of graph rewriting for simulating term rewriting , 1994, TOPL.

[111]  Corrado Moiso,et al.  A Completeness Result for E-unification Algorithms Based on Conditional Narrowing , 1986, Foundations of Logic and Functional Programming.

[112]  Enno Ohlebusch,et al.  Modular Termination Proofs for Rewriting Using Dependency Pairs , 2002, J. Symb. Comput..