Descriptive inner model theory

The purpose of this paper is to outline some recent progress in descriptive inner model theory, a branch of set theory which studies descriptive set theoretic and inner model theoretic objects using tools from both areas. There are several interlaced problems that lie on the border of these two areas of set theory, but one that has been rather central for almost two decades is the conjecture known as the Mouse Set Conjecture (MSC). One particular motivation for resolving MSC is that it provides grounds for solving the inner model problem which dates back to 1960s. There have been some new partial results on MSC and the methods used to prove the new instances suggest a general program for solving the full conjecture. It is then our goal to communicate the ideas of this program to the community at large.

[1]  I. Neeman The determinacy of long games , 2004 .

[2]  Yiannis N. Moschovakis,et al.  Cabal Seminar 79–81 , 1983 .

[3]  M. Viale,et al.  On the consistency strength of the proper forcing axiom , 2010, 1012.2046.

[4]  A stationary-tower-free proof of the derived model theorem , 2005 .

[5]  Yiannis N. Moschovakis,et al.  The axiom of determinacy, strong partition properties and nonsingular measures , 1981 .

[6]  W. Hugh Woodin,et al.  The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal , 1999 .

[7]  John R. Steel,et al.  Does Mathematics Need New Axioms? , 2000, Bulletin of Symbolic Logic.

[8]  Ernest Schimmerling A Core Model Toolbox and Guide , 2010 .

[9]  John R. Steel,et al.  An Outline of Inner Model Theory , 2010 .

[10]  S. Shelah,et al.  Martin's Maximum, saturated ideals and non-regular ultrafilters. Part II , 1988 .

[11]  James Cummings Strong Ultrapowers and Long Core Models , 1993, J. Symb. Log..

[12]  J. Steel Derived models associated to mice , 2007 .

[13]  Penelope Maddy,et al.  Believing the axioms. I , 1988, Journal of Symbolic Logic.

[14]  John R. Steel Projectively Well-Ordered Inner Models , 1995, Ann. Pure Appl. Log..

[15]  John R. Steel,et al.  The extent of scales in L(R) , 1983 .

[16]  Menachem Magidor,et al.  Universally Baire Sets of Reals , 1992 .

[17]  John R. Steel HODL(R) is a core model below \Theta , 1995, Bull. Symb. Log..

[18]  G. Sacks Higher recursion theory , 1990 .

[19]  A Theorem of Woodin on Mouse Sets , 2004 .

[20]  Yizheng Zhu Realizing an AD+ model as a derived model of a premouse , 2015, Ann. Pure Appl. Log..

[21]  Nam Trang HOD in natural models of AD+ , 2014, Ann. Pure Appl. Log..

[22]  R. Gorenflo,et al.  Multi-index Mittag-Leffler Functions , 2014 .

[23]  William J. Mitchell Inner Models for Large Cardinals , 2012, Sets and Extensions in the Twentieth Century.

[24]  R. Jensen,et al.  The fine structure of the constructible hierarchy , 1972 .

[25]  S. D. Chatterji Proceedings of the International Congress of Mathematicians , 1995 .

[26]  Paul B. Larson,et al.  The Stationary Tower: Notes on a Course by W , 2004 .

[27]  William J. Mitchell,et al.  Sets constructible from sequences of ultrafilters , 1974, Journal of Symbolic Logic.

[28]  M. Foreman,et al.  Handbook of Set Theory , 2010 .

[29]  A. Kanamori The Higher Infinite , 1994 .

[30]  Yiannis N. Moschovakis,et al.  Cabal Seminar 76–77 , 1978 .

[31]  Itay Neeman Optimal proofs of determinacy , 1995, Bull. Symb. Log..

[32]  Ronald B. Jensen,et al.  Inner Models and Large Cardinals , 1995, Bulletin of Symbolic Logic.

[33]  Mitch Rudominer The Largest Countable Inductive Set is A Mouse Set , 1999, J. Symb. Log..

[34]  William J. Mitchell,et al.  Fine Structure and Iteration Trees , 2017, Lecture Notes in Logic.

[35]  John R. Steel Scales in L(R) , 1983 .

[36]  Itay Neeman Inner models in the region of a Woodin limit of Woodin cardinals , 2002, Ann. Pure Appl. Log..

[37]  Yiannis N. Moschovakis,et al.  Measurable cardinals in playful models , 1981 .

[38]  Y. Moschovakis,et al.  Cabal Seminar 77 – 79 , 1981 .

[39]  Yi Zhang,et al.  Advances in Logic , 2007 .

[40]  Y. Moschovakis Descriptive Set Theory , 1980 .

[41]  Grigor Sargsyan,et al.  A tale of hybrid mice , 2009 .

[42]  John R. Steel PFA implies ADL(ℝ) , 2005, J. Symb. Log..

[43]  W. Woodin Strong Axioms of Infinity and the Search for V , 2011 .

[44]  J. R. Steel Logic Colloquium 2006: The derived model theorem , 2009 .

[45]  Robert M. Solovay,et al.  The independence of DC from AD , 2020, Large Cardinals, Determinacy and Other Topics.

[46]  Ernest Schimmerling The ABC's of mice , 2001, Bull. Symb. Log..

[47]  Ralf Schindler,et al.  The core model induction , 2007 .

[48]  W. Hugh Woodin,et al.  Large Cardinals from Determinacy , 2010 .

[49]  Herman Geuvers,et al.  Logic Colloquium 2006 , 2009 .

[50]  Steve Jackson,et al.  Structural Consequences of AD , 2010 .

[51]  P. Welch,et al.  THE AXIOM OF DETERMINACY, FORCING AXIOMS, AND THE NONSTATIONARY IDEAL (de Gruyter Series in Logic and its Applications 1) , 2001 .

[52]  Mitch Rudominer Mouse Sets , 1997, Ann. Pure Appl. Log..

[53]  Ralf Schindler,et al.  Stacking mice , 2009, The Journal of Symbolic Logic.

[54]  William J. Mitchell Sets Constructed from Sequences of Measures: Revisited , 1983, J. Symb. Log..

[55]  John Steel,et al.  ITERATION TREES , 1994 .

[56]  Saharon Shelah,et al.  Coding with Ladders A Well Ordering of The Reals , 2002, J. Symb. Log..